Technical Physics Letters

, Volume 33, Issue 4, pp 295–298 | Cite as

InSb/InAs quantum dots grown by liquid phase epitaxy

  • K. D. Moiseev
  • Ya. A. Parkhomenko
  • A. V. Ankudinov
  • E. V. Gushchina
  • M. P. Mikhaĭlova
  • A. N. Titkov
  • Yu. P. Yakovlev
Article

Abstract

The first original results on the growth of quantum dots (QDs) in the InSb/InAs system by liquid phase epitaxy (LPE) are reported. The density and dimensions of QDs were studied by methods of scanning probe microscopy and atomic force microscopy. The surface density, shapes, and dimensions of LPE-grown nanoislands depend on the growth conditions (temperature, cooling rate, and solution melt-substrate contact time). In the interval of temperatures T = 420–445°C, homogeneous arrays of InSb quantum dots on InAs(100) substrates were obtained with an average height of H = 3.4 ± 1nm, a radius of R = 27.2 ± 7.5 nm, and a density of up to 1.9 × 1010 cm−2.

PACS numbers

73.21.La 81.15.Lm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 385 (1998) [Semiconductors 32, 343 (1999)].Google Scholar
  2. 2.
    J. M. Moison, F. Houzay, F. Barthe, et al., Appl. Phys. Lett. 64, 196 (1994).CrossRefADSGoogle Scholar
  3. 3.
    F. Hatami, N. N. Ledentsov, M. Grundmann, et al., Appl. Phys. Lett. 67, 656 (1995).CrossRefADSGoogle Scholar
  4. 4.
    G. Saint-Giroris, G. Patriarche, A. Michon, et al., Appl. Phys. Lett. 89, 031 923 (2006).Google Scholar
  5. 5.
    D. E. Eaglesham and M. Cerrulo, Phys. Rev. Lett. 65, 1020 (1995).Google Scholar
  6. 6.
    E. Alphandery, R. J. Nicolas, N. J. Mason, et al., Appl. Phys. Lett. 74, 2041 (1999).CrossRefADSGoogle Scholar
  7. 7.
    P. Bhattacharya, A. D. Stiff, J. Roberts, and S. Chakrabarti, in Mid-Infrared Optoelectronics, Ed. by A. Kritter (Springer, New York, 2006), pp. 487–513.CrossRefGoogle Scholar
  8. 8.
    C. W. Warren et al., Science 281, 2016 (1998).CrossRefGoogle Scholar
  9. 9.
    G. G. Zegrya, Pis’ma Zh. Tekh. Fiz. 32(4), 12 (2006) [Tech. Phys. Lett. 32, 174 (2006)].Google Scholar
  10. 10.
    A. Krier, X. L. Huang, and A. Hammiche, Appl. Phys. Lett. 77, 3791 (2000).CrossRefADSGoogle Scholar
  11. 11.
    I. E. Maronchuk, A. I. Maronchuk, T. F. Kulyutkina, et al., Poverkhnost, No. 12, 97 (2005).Google Scholar
  12. 12.
    A. N. Imenkov, N. M. Kolchanova, P. Kubat, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 35, 375 (2001) [Semiconductors 35, 360 (2001)].Google Scholar
  13. 13.
    N. Deguffrog, M. Ramonda, A. N. Baranov, and E. Tournie, in Proceedings of the 12th International Conference on Narrow Gap Semiconductors, Touluse, France, 2005, Ser. No. 187, pp. 93–98.Google Scholar
  14. 14.
    S. V. Ivanov, A. N. Semenov, O. G. Lyublinskaya, et al., in Proceedings of the 12th International Conference on Narrow Gap Semiconductors, Touluse, France, 2005, Ser. No. 187, pp. 89–92.Google Scholar
  15. 15.
    R. J. Nicholas, P. A. Shields, R. A. Child, et al., Physica E 20, 204 (2004).CrossRefADSGoogle Scholar
  16. 16.
    A. Ankudinov, V. Maruschak, A. Titkov, et al., Phys. Low-Dim. Struct. 3/4, 9 (2001).Google Scholar
  17. 17.
    M. S. Dunaevsky, A. V. Ankudinov, Z. F. Krasilnik, et al., in Proceedings of the 11th International Symposium on Nanostructures: Physics and Technology, St. Petersburg, 2003, pp. 103–104.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • K. D. Moiseev
    • 1
  • Ya. A. Parkhomenko
    • 1
  • A. V. Ankudinov
    • 1
  • E. V. Gushchina
    • 1
  • M. P. Mikhaĭlova
    • 1
  • A. N. Titkov
    • 1
  • Yu. P. Yakovlev
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations