Technical Physics Letters

, Volume 33, Issue 2, pp 147–150 | Cite as

Detection of coupling between oscillators from their short time series: Condition of applicability of the method of phase dynamics modeling

  • D. A. Smirnov
  • I. A. Karpeev
  • B. P. Bezruchko


One of the most sensitive methods for determining the presence and character of coupling between two oscillators is based on the modeling of their phase dynamics. This method is applicable if the observed oscillations are not synchronous and the length of available time series is no less than 50 characteristic periods. Now it is established that the method can be applied to still shorter time series with a length of 20 to 50 periods, provided that the estimated phase coherence coefficient (measuring the degree of synchronization) does not exceed a certain threshold dependent on the time series length and the frequency detuning. This result expands the possibilities of detecting the coupling between oscillatory systems under conditions of nonstationary signals and deficient data.

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Arnhold, K. Lehnertz, P. Grassberger, and C. E. Elger, Physica D 134, 419 (1999).zbMATHCrossRefADSGoogle Scholar
  2. 2.
    R. Quian Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger, Phys. Rev. E 65, 041903 (2002).Google Scholar
  3. 3.
    D. A. Smirnov, M. B. Bodrov, J. L. Perez Velazquez, et al., Chaos 15, 024102 (2005).Google Scholar
  4. 4.
    S. Jevrejeva, J. Moore, and A. Grinsted, J. Geophys. Res. 108, 4677 (2003).CrossRefGoogle Scholar
  5. 5.
    I. I. Mokhov and D. A. Smirnov, Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 650 (2006).Google Scholar
  6. 6.
    B. Bezruchko, V. Ponomarenko, M. G. Rosenblum, and A. S. Pikovsky, Chaos 13, 179 (2003).CrossRefADSGoogle Scholar
  7. 7.
    D. A. Smirnov and R. G. Andrzejak, Phys. Rev. E 71, 036807 (2005).Google Scholar
  8. 8.
    A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, Cambrrdge, 2001).zbMATHGoogle Scholar
  9. 9.
    M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. E 64, 045202 (2001).Google Scholar
  10. 10.
    D. A. Smirnov and B. P. Bezruchko, Phys. Rev. E 68, 046209 (2003).Google Scholar
  11. 11.
    D. A. Smirnov, Radiotekh. Élektron. (Moscow) 51, 569 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • D. A. Smirnov
    • 1
  • I. A. Karpeev
    • 1
  • B. P. Bezruchko
    • 1
  1. 1.Institute of Radio Engineering and Electronics (Saratov Branch)Russian Academy of SciencesSaratovRussia

Personalised recommendations