Advertisement

Technical Physics Letters

, Volume 33, Issue 1, pp 14–17 | Cite as

Superconductivity as Bose-Einstein condensation in high-and low-temperature superconductors (diluted metals)

  • V. N. Bogomolov
Article

Abstract

The structures and parameters of some low-and high-temperature superconductors (HTSCs) are considered, adopting a O2− ion radius of 0.5–0.6 Å. The transitions in ultrahigh-T c unstable compositions Yba2Cu3Se7 (at T c = 371 K) and Ag2(Ag3Pb2H2O6) (T c ∼ 400 K) and in low-T c composition SrNb x Ti1−x O3 (T c ∼ 0.3 K) to the superconducting state correspond to the Bose-Einstein condensation. The structural instability of the first HTSC is related to the fact that the ion radius of Se2− (∼1 Å) is significantly greater than that of O2−; the properties of the second HTSC are quasi-one-dimensional and impractical. The electron densities and effective masses in some stoichiometric and nonstoichiometric (nanocomposite) HTSCs are evaluated. Large effective masses of electrons in HTSCs can be indicative of the existence of polarons (bipolarons) in such systems. New potential HTSC compositions (Mg x WO3) are mentioned.

PACS numbers

74.20.-z 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. D. Shabetnik, S. Yu. Butuzov, and V. I. Plaksiĭ, Pis’ma Zh. Tekh. Fiz. 21(10), 67 (1995) [Tech. Phys. Lett. 21, 382 (1995)].Google Scholar
  2. 2.
    J. T. Waber and Don T. Cromer, J. Chem. Phys. 42, 4116 (1965).CrossRefGoogle Scholar
  3. 3.
    Z. Djurek Medunic, A. Tonejc, and M. Paljevic, Physica C 341–348, 723 (2000); http://xxx.lanl.gov/abs/condmat/0310011.CrossRefGoogle Scholar
  4. 4.
    V. N. Bogomolov, Pis’ma Zh. Tekh. Fiz. 28(5), 84 (2002) [Tech. Phys. Lett. 28, 211 (2002)]; Pis’ma Zh. Tekh. Fiz. 21 (22), 52 (1995) [Tech. Phys. Lett. 21, 928 (1995)].Google Scholar
  5. 5.
    V. N. Bogomolov, http://xxx.lanl.gov/abs/condmat/0506399; /0505718; /0412740; /0411574; /0604509; /0604616.
  6. 6.
  7. 7.
    R. Brout, Phase Transitions (Brussels Univ. Press, New York, 1965), p. 250.Google Scholar
  8. 8.
  9. 9.
    H. Uwe and T. Sakudo, Phys. Rev. B 13, 271 (1976).CrossRefADSGoogle Scholar
  10. 10.
    E. Ambler, J. H. Colwell, W. R. Hosler, and J. F. Schooley, Phys. Rev. 148, 280 (1966); J. F. Schooley, W. R. Hosler, E. Ambler, et al., Phys. Rev. Lett. 14, 305 (1965).CrossRefADSGoogle Scholar
  11. 11.
    V. L. Gurevich, A. I. Larkin, and Yu. A. Firsov, Fiz. Tverd. Tela (Leningrad) 4, 185 (1962) [Sov. Phys. Solid State 4, 131 (1962)].Google Scholar
  12. 12.
    P. P. Edvards, J. Supercond. 13, 933 (2000); R. A. Ogg, Jr., Phys. Rev. 69, 243 (1946).CrossRefGoogle Scholar
  13. 13.
    A. Shengelaya, S. Reich, Y. Tsabba, and K. A. Muller, Eur. Phys. J. B 12, 13 (1999).CrossRefADSGoogle Scholar
  14. 14.

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. N. Bogomolov
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations