Advertisement

Technical Physics Letters

, Volume 32, Issue 12, pp 1060–1063 | Cite as

Electron-beam-induced modification of stoichiometry and acceleration of titanium diffusion in Al2O3/Al/C structures

  • A. D. Pogrebnyak
  • B. P. Gritsenko
  • S. M. Duvanov
  • N. A. Pogrebnyak
  • M. K. Kylyshkanov
  • V. V. Ponaryadov
Article

Abstract

The electron-beam-induced modification of stoichiometry and acceleration of titanium diffusion in Al2O3/Al/C structures have been studied for the first time using He4+ ion backscattering, scanning electron microscopy, and electron probe microanalysis techniques. It is established that the electron beam treatment leads to an increase in the effective diffusion coefficient of ion-implanted titanium, changes the ratio of aluminum and oxygen concentrations in the α-Al2O3 layer, and induces the substitution of carbon for oxygen in this layer.

PACS numbers

81.15.Hi 81.05.Hd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Pogrebnjak and Yu. N. Tyurin, Zh. Tekh. Fiz. 74(8), 109 (2004) [Tech. Phys. 49, 1064 (2004)].Google Scholar
  2. 2.
    V. I. Chernenko, L. A. Snezhko, and I. I. Papanova, Anode-Spark Electrolytic Coating (Khimiya, Leningrad, 1991) [in Russian].Google Scholar
  3. 3.
    V. I. Chernenko, L. A. Snezhko, I. I. Papanova, and K. I. Litovchenko, Theory and Technology of High-Voltage Anode Processes (Naukova Dumka, Kiev, 1995) [in Russian].Google Scholar
  4. 4.
    G. A. Markov, A. I. Simonova, and O. P. Girievich, Zashchita Metallov, No. 3, 289 (1997).Google Scholar
  5. 5.
    S. M. Duvanov and A. G. Balogh, Nucl. Instrum. Methods Phys. Res. B 171, 475 (2000).CrossRefADSGoogle Scholar
  6. 6.
    G. P. Pells, J. Am. Ceram. Soc. 77, 368 (1994).CrossRefGoogle Scholar
  7. 7.
    K. K. Kadyrzhanov, F. F. Komarov, A. D. Pogrebnyak, et al., Ion-Beam and Ion-Plasma Modification of Metals (Izd. MGU, Moscow, 2005) [in Russian].Google Scholar
  8. 8.
    C. J. MeHargue, P. S. Sklad, and C. W. White, Nucl. Instrum. Methods Phys. Res. B 46, 79 (1990).CrossRefADSGoogle Scholar
  9. 9.
    A. D. Pogrebnjak, Yu. A. Kravchenko, and S. B. Kislitsyn, Surf. Coat. Tech. 76, 214 (2006).Google Scholar
  10. 10.
    A. D. Pogrebnjak, B. P. Gritsenko, N. A. Pogrebnjak, et al., in Proceedings of the 8th International Conference on Solid State Physics, Almaty, 2004, Vol. 1, pp. 105–118.Google Scholar
  11. 11.
    M. Mayer, SIMNRA Users Guide, Technical Report no. IPP 9/113 (Max-Planck-Institute fur Plasma Physik, Garching, 1997).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. D. Pogrebnyak
    • 1
  • B. P. Gritsenko
    • 1
  • S. M. Duvanov
    • 2
  • N. A. Pogrebnyak
    • 3
  • M. K. Kylyshkanov
    • 4
  • V. V. Ponaryadov
    • 5
  1. 1.Institute of Surface ModificationSumyUkraine
  2. 2.Institute of Strength Physics and Materials Science, Siberian DivisionRussian Academy of SciencesTomskRussia
  3. 3.Institute of Metal PhysicsNational Academy of Sciences of UkraineKievUkraine
  4. 4.East-Kazakhstan State UniversityUst-KamenogorskKazakhstan
  5. 5.Belarus State UniversityMinskBelarus

Personalised recommendations