Advertisement

Technical Physics

, Volume 64, Issue 12, pp 1837–1842 | Cite as

Spontaneous Transitions to High-Conductivity States in Polyvinylchloride Composite Films

  • T. V. Vlasova
  • S. I. RasmaginEmail author
PHYSICS OF LOW-DIMENSIONAL STRUCTURES

Abstract

Experimental results on anomalous conductivity in specifically synthesized copolymer films are analyzed. Polyacetylene molecular fragments with variable concentration are introduced into polyvinylchloride macromolecules. It is shown that such samples exhibit spontaneous and stimulated conductivity jumps by 13 orders of magnitude and the lifetime of such states may range from several minutes to a day. A qualitative model is proposed to describe the anomalous behavior of the polyvinylchloride composite including effects that provide stabilization of the high-conductivity states, conditions for development of instability in the transitions between the states, and the reasons for long-lived high-conductivity state even in the absence of external voltage. Simple numerical estimations that prove the proposed effects are considered.

Notes

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

  1. 1.
    W. Barford, Electronic and Optical Properties of Conjugated Polymers (Clarendon, Oxford, 2005).Google Scholar
  2. 2.
    M. Wan, Conducting Polymers with Micro or Nanometer Structure (Springer, 2008).Google Scholar
  3. 3.
    A. N. Lachinov and N. V. Vorob’eva, Phys.-Usp. 49, 1223 (2006).CrossRefGoogle Scholar
  4. 4.
    K. Friedrich, S. Fakirov, and Z. Zhang, Polymer Composites. From Nano- to Macro-Scale (Springer, 2005).Google Scholar
  5. 5.
    Polymer Nanocomposites, Ed. by Y.-W. Mai and Z.-Z. Yu (Woodhead, Cambridge, 2006).Google Scholar
  6. 6.
    I. V. Dolbin, G. V. Kozlov, and G. E. Zaikov, Structural Stabilization of Polymers: Fractal Models (Akademiya Estestvoznaniya, 2007).Google Scholar
  7. 7.
    R. A. Pethrick, Polymer Structure Characterization: From Nano To Macro Organization (Royal Society of Chemistry, 2013).Google Scholar
  8. 8.
    D. V. Vlasov, V. I. Kryshtob, T. V. Vlasova, L. A. Apresyan, and S. I. Rasmagin, Polym. Sci. Ser. A 57, 304 (2015).  https://doi.org/10.1134/S0965545X15030165 CrossRefGoogle Scholar
  9. 9.
    S. I. Rasmagin, V. I. Krasovskii, D. V. Vlasov, L. A. Apresyan, T. V. Vlasova, V. I. Kryshtob, I. N. Feofanov, and M. A. Kazaryan, Proc. SPIE 9810, 98100C (2015).  https://doi.org/10.1117/12.2224963 ADSCrossRefGoogle Scholar
  10. 10.
    V. I. Kryshtob and S. I. Rasmagin, Tech. Phys. 62, 1689 (2017).  https://doi.org/10.1134/S1063784217110196 CrossRefGoogle Scholar
  11. 11.
    V. I. Kryshtob, D. V. Vlasov, V. F. Mironov, L. A. Apresyan, T. V. Vlasova, S. I. Rasmagin, Z. A. Kuratashvili, and A. A. Solovskii, Russ. Electr. Eng. 86, 471 (2015).CrossRefGoogle Scholar
  12. 12.
    V. I. Kryshtob, D. V. Vlasov, V. F. Mironov, L. A. Apresyan, T. V. Vlasova, S. I. Rasmagin, Z. A. Kuratashvili, and A. A. Solovskii, Russ. Electr. Eng. 85, 318 (2014).CrossRefGoogle Scholar
  13. 13.
    S. I. Peredereeva, I. G. Orlov, and M. I. Cherkashin, Russ. Chem. Rev. 44, 295 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979).Google Scholar
  15. 15.
    P. Stallinga, Adv. Mater. 23, 3356 (2011).CrossRefGoogle Scholar
  16. 16.
    P. Sheng, Phys. Rev. 21, 2180 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 2004).zbMATHGoogle Scholar
  18. 18.
    K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969).Google Scholar
  19. 19.
    M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).Google Scholar
  20. 20.
    S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).ADSCrossRefGoogle Scholar
  21. 21.
    O. A. Skaldin, A. Yu. Zherebov, A. N. Lachinov, A. N. Chuvyrov, and V. A. Delev, JETP Lett. 51, 159 (1990).ADSGoogle Scholar
  22. 22.
    N. S. Enikolopyan, Yu. A. Berlin, S. I. Beshenko, and V. A. Zhorin, JETP Lett. 33, 492 (1981).ADSGoogle Scholar
  23. 23.
    Yu. A. Berlin, S. I. Beshenko, and V. A. Zhorin, Dokl. Akad. Nauk SSSR 260, 1389 (1981).Google Scholar
  24. 24.
    V. I. Kryshtob, S. I. Rasmagin, and T. V. Vlasova, Russ. Electr. Eng. 89, 385 (2018).CrossRefGoogle Scholar
  25. 25.
    S. I. Rasmagin, V. I. Krasovskii, I. K. Novikov, I. K. Novikov, and I. N. Fofanov, Proc. SPIE 10614, 106140B (2018).  https://doi.org/10.1117/12.2302981 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Prokhorov General Physics Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations