Technical Physics

, Volume 64, Issue 12, pp 1729–1737 | Cite as

Comparative Study of Polymer Nanoparticles on the Basis of Caprolactone–Polyvinyl Alcohol Mixtures with an Encapsulated Antitumor Preparation by Atomic Force Microscopy, X-Ray Diffraction, and Dynamic Light Scattering

  • T. E. SukhanovaEmail author
  • M. E. Vylegzhanina
  • A. Ya. Volkov
  • E. R. Gasilova
  • A. A. Kutin
  • Moshera Samy
  • Heba M. Abdallah
  • Magdy M. H. Ayoub


The morphology, structure, and optical properties of composites with biodegradable polymeric particles, which are based on poly-ε-caprolactone–polyvinyl alcohol (stabilizer) mixtures and contain 5-Fluorouracil (an antitumor preparation), have been studied by atomic-force and optical microscopy, X-ray diffraction, and dynamic and static light scattering. Studies have shown that the morphology of synthesized composites sustains appreciable transformations depending on their stabilizer content. No crystalline reflections corresponding to 5-Fluorouracil have been revealed, thus arguing for a high dispersity of this preparation in the polymeric matrix of caprolactone. The correlations between the structural and morphological parameters, composition, stabilizer concentration and the efficiency of the encapsulation of 5-Fluorouracil by the composites have been established.



This study was supported by the Russian Foundation for Basic Research (grant no. 17-53-61026 Egypt_a) and the Egyptian Academy of Sciences (project STDF no. 26599).


The authors declare that they do not have any conflicts of interest.


  1. 1.
    F. F. Sahle, B. Balzus, C. Gerecke, B. Kleuser, and R. Bodmeier, Eur. J. Pharm. Sci. 92, 98 (2016). CrossRefGoogle Scholar
  2. 2.
    A. Amin, M. Samy, S. H. Abd El-Alim, A. M. Rabia, M. H. Magdy, and A. Ayoub, Int. J. Polym. Mater. Polym. Biomater. 67, 942 (2018).CrossRefGoogle Scholar
  3. 3.
    R. Othman, G. T. Vladisavljević, and Z. K. Nagy, Chem. Eng. Sci. 137, 119 (2015). CrossRefGoogle Scholar
  4. 4.
    M. Huertas, C. E. Fessi, and H. A. Elaissari, Int. J. Pharm. 385, 113 (2010). CrossRefGoogle Scholar
  5. 5.
    Q. Tang, Y. Wang, and R. Huang, PLoS One 9, 98455 (2014). ADSCrossRefGoogle Scholar
  6. 6.
    J. L. Arias, Molecules 13, 2340 (2008). CrossRefGoogle Scholar
  7. 7.
    R. L. Sastre, M. Dolores Blanco, C. Teij’on, et al., Drug. Dev. Res. 63, 41 (2005).CrossRefGoogle Scholar
  8. 8.
    S. Wang, H. Chen, Q. Cai, and J. Bei, Polym. Adv. Technol. 12, 253 (2001).CrossRefGoogle Scholar
  9. 9.
    F. Canfarotta, M. J. Whitcombe, and S. A. Piletsky, Biotechnol. Adv. 31, 1585 (2013).CrossRefGoogle Scholar
  10. 10.
    Z. Li and B. Tan, Mater. Sci. Eng. C 45, 620 (2014). CrossRefGoogle Scholar
  11. 11.
    M. Yazdimamaghani, M. Razavi, D. Vashaee, and L. Tayebi, Mater. Sci. Eng. C 49, 436 (2015). CrossRefGoogle Scholar
  12. 12.
    S. H. Huang, T.-T. Hsu, T.-H. Huang, C.-Y. Lin, and M.-Y. Shie, J. Dent. Sci. 12, 33 (2017). CrossRefGoogle Scholar
  13. 13.
    M. A. Woodruff and D. W. Hutmacher, Prog. Polym. Sci. 35, 1217 (2010).CrossRefGoogle Scholar
  14. 14.
    A. Salerno, C. Domingo, and J. Saurina, Mater. Sci. Eng. C 75, 1191 (2017). CrossRefGoogle Scholar
  15. 15.
    B. D. Longley, D. P. Harkin, and P. G. Johnston, Rev. Cancer 3, 330 (2003). CrossRefGoogle Scholar
  16. 16.
    N. Zhang, Y. Yin, S.-J. Xu, and W.-S. Chen, Molecules 13, 1551 (2008). CrossRefGoogle Scholar
  17. 17.
    J. L. Arias, M. A. Ruiz, M. López-Viota, and A. V. Delgado, Colloids Surf., B 62, 64 (2008). CrossRefGoogle Scholar
  18. 18.
    K. E. Lee, S. H. Cho, H. B. Lee, S. Y. Jeong, and S. H. Yuk, J. Microencapsulation 20, 489 (2003). CrossRefGoogle Scholar
  19. 19.
    M. Iqbal, N. Zafar, H. Fessi, and A. Elaissari, Int. J. Pharm. 496, 173 (2015). CrossRefGoogle Scholar
  20. 20.
    J. Prasad Rao and K. E. Geckeler, Prog. Polym. Sci. 36, 887 (2011). CrossRefGoogle Scholar
  21. 21.
    W. Brown, Dynamic Light Scattering: The Method and Some Applications (Clarendon, Oxford, 1993).Google Scholar
  22. 22.
    M. Ayoub, N. Ahmed, N. Kalaji, C. Charcosset, A. Magdy, H. Fessi, and A. Elaissari, J. Biomed. Nanotechnol. 7, 255 (2011). CrossRefGoogle Scholar
  23. 23.
    C. Prieto and L. Calvo, J. Supercrit. Fluids 119, 274 (2017). CrossRefGoogle Scholar
  24. 24.
    R. H. Ansary, M. B. Awang, and M. M. Rahman, Trop. J. Pharm. Res. 13, 1179 (2014). CrossRefGoogle Scholar
  25. 25.
    K. Öztürk, A. R. Mashal, B. A. Yegin, and S. Calis, Pharm. Dev. Technol. 22, 635 (2017).CrossRefGoogle Scholar
  26. 26.
    R. Khandanlou, M. B. Ahmad, K. Shameli, E. Saki, and K. Kalantari, Int. J. Mol. Sci. 15, 18466 (2014). CrossRefGoogle Scholar
  27. 27.
    P. Li, Y. Wang, Z. Peng, P. Li, M. F. She, and L. Kong, Proc. Int. Conf. on Nanoscience and Nanotechnology, Sydney, Australia,2010, p. 248.Google Scholar
  28. 28.
    P. K. Babu, Y. Maruthi, S. V. Pratap, K. Sudhakar, R. Sadihu, M. N. Prabhakar, J. I. L. Song, M. C. S. Subha, and K. C. Rao, Int. J. Pharm. Pharm. Sci. 7 (9), 95 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. E. Sukhanova
    • 1
    • 2
    Email author
  • M. E. Vylegzhanina
    • 1
  • A. Ya. Volkov
    • 1
  • E. R. Gasilova
    • 1
  • A. A. Kutin
    • 1
  • Moshera Samy
    • 3
  • Heba M. Abdallah
    • 3
  • Magdy M. H. Ayoub
    • 3
  1. 1.Institute of Macromolecular Compounds, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Lebedev Research Institute of Synthetic RubberSt. PetersburgRussia
  3. 3.Department of Polymers and Pigments, National Research CenterDokki, Giza, CairoEgypt

Personalised recommendations