Advertisement

Technical Physics

, Volume 64, Issue 12, pp 1814–1820 | Cite as

Stress Corrosion Cracking of Metals and Alloys in Aggressive H2S–CO2–Cl Environments

  • A. I. PetrovEmail author
  • M. V. RazuvaevaEmail author
PHYSICAL MATERIALS SCIENCE
  • 22 Downloads

Abstract

We have analyzed the data on stress corrosion cracking of steels of various grades in acidic H2S–CO2–Cl solutions. For the active region of corrosion, we have obtained the dependence of the lifetime and the steady-state corrosion rate on external (concentration of solution components, temperature, and tensile stress) and internal parameters of corrosion (Cr, Ni, and Mo doping level and conditional yield stress for steel). The resultant dependences will make it possible to estimate the corrosion behavior and the possibility of using steel in an aggressive environment without resorting to durable and costly natural tests.

Notes

CONFLICT OF INTEREST

The authors claim that there are no conflicts of interests

REFERENCES

  1. 1.
    Corrosion, Ed. by L. L. Shraer and V. S. Sinyavskii (Metallurgiya, Moscow, 1981).Google Scholar
  2. 2.
    I. M. Robertson, P. Sofronis, A. Nagao, M. L. Martin, S. Wang, D. W. Gross, and K. E. Nygrenet, Metall. Mater. Trans 46, 1085 (2015).CrossRefGoogle Scholar
  3. 3.
    A. J. Sedriks, Corosion of Stainless Steel (Wiley, Hoboken, 1996).Google Scholar
  4. 4.
    V. Vignal, S. Ringeval, and S. Thiebaut, Corros. Sci. 85, 42 (2014).CrossRefGoogle Scholar
  5. 5.
    F. Shi, L. Zhang, J. Yang, et al., Corros. Sci. 102, 103 (2016).CrossRefGoogle Scholar
  6. 6.
    X. Wen, P. Bai, B. Luo, S. Zeng, and C. Chen, Corros. Sci. 139, 124 (2018).ADSCrossRefGoogle Scholar
  7. 7.
    M. Henthorne, Corrosion 72, 1488 (2016).CrossRefGoogle Scholar
  8. 8.
    H. Margot-Marette, G. Bardou, and J. C. Charbonnier, Corros. Sci. 27, 1009 (1987).CrossRefGoogle Scholar
  9. 9.
    V. V. Skorchelletti, Theoretical Foundations of Metal Corrosion (Khimiya, Leningrad, 1973).Google Scholar
  10. 10.
    E. M. Gutman, Mechanochemistry of Metals and Corrosion Protection (Metallurgiya, Moscow, 1981).Google Scholar
  11. 11.
    A. V. Ryabchikov and V. P. Sidorov, Zashch. Met. 75, 376 (1969).Google Scholar
  12. 12.
    F. Mancia, Corros. Sci. 27, 1225 (1987).CrossRefGoogle Scholar
  13. 13.
    H. Kurahashi, T. Kurisu, Y. Sone, K. Wada, and Y. Nakai, Corrosion 41, 211 (1985).CrossRefGoogle Scholar
  14. 14.
    R. Nishimura, Corrosion 48, 882 (1992).CrossRefGoogle Scholar
  15. 15.
    D. Murali, Corrosion 41, 406 (1985).CrossRefGoogle Scholar
  16. 16.
    A. Ikeda, S. Mukai, and M. Veda, Corrosion 41, 185 (1985).CrossRefGoogle Scholar
  17. 17.
    H. H. Uhlig, Mater. Perform. 16, 22 (1977).Google Scholar
  18. 18.
    J. L. Crolet and M. R. Bonic, Corrosion 39, 39 (1983).CrossRefGoogle Scholar
  19. 19.
    A. I. Petrov and M. V. Razuvaeva, Tech. Phys. 55, 844 (2010).CrossRefGoogle Scholar
  20. 20.
    W. Zhao, Y. Zou, K. J. Matsuda, and Z. Zou, Corros. Sci. 102, 455 (2016).CrossRefGoogle Scholar
  21. 21.
    A. Anderko, F. Gui, L. Cao, N. Sridhar, and G. R. Engelhardtet, Corrosion 71, 1197 (2015).CrossRefGoogle Scholar
  22. 22.
    X. Lei, Y. Feng, J. Zhang, A. Fu, C. Yin, and D. D. Macdonald, Electrochem. Acta 191, 640 (2016).CrossRefGoogle Scholar
  23. 23.
    R. N. Parkins, in Corrosion, Ed. by L. L. Shreiz (Newnes-Butterworth, London, 1976).  https://doi.org/10.1016/C2013-0-04015-7
  24. 24.
    G. T. Burstein and P. I. Marshall, Corros. Sci. 23, 125 (1983).CrossRefGoogle Scholar
  25. 25.
    H. S. Kwon, E. A. Cho, and K. A. Yeon, Corrosion 56, 32 (2000).CrossRefGoogle Scholar
  26. 26.
    C.-J. Park and H.-S. Kwon, Met. Mater. Int. 11, 309 (2005).CrossRefGoogle Scholar
  27. 27.
    N. Parnian, Mater. Des. 36, 788 (2012).CrossRefGoogle Scholar
  28. 28.
    M. Asadian, M. Sabzi, and S. H. Maansavi Anijdan, Int. J. Pressure Vessels Piping 171, 184 (2019).CrossRefGoogle Scholar
  29. 29.
    Z. Liu, X. Gao, and L. Du, Electrochim. Acta 232, 528 (2017).CrossRefGoogle Scholar
  30. 30.
    L. Lin, Y. Li, and F. H. Wang, J. Mater. Sci. Technol. 26, 1 (2010).CrossRefGoogle Scholar
  31. 31.
    A. N. Isfahany, H. Saghafian, and G. Borhani, J. Alloys Compd. 509, 3931 (2011).CrossRefGoogle Scholar
  32. 32.
    C. V. Prabhu Gauncar, A. M. Huntz,and P. Lacombe, Met. Sci. 14, 241 (1980).Google Scholar
  33. 33.
    Y. S. Choi, J. G. Kim, Y. S. Park, and J. Y. Park, Mater. Lett. 61, 244 (2007).CrossRefGoogle Scholar
  34. 34.
    H. Y. Li, C. F. Dong, K. Xiao, X.-G. Li, P. Zhong, Acta Metall. Sin. (Engl. Lett.) 29, 1064 (2016).CrossRefGoogle Scholar
  35. 35.
    P. D. Bibmes, C. L. Llorente, and C. M. Mendez, Corros. Sci. 51, 876 (2009).CrossRefGoogle Scholar
  36. 36.
    S. K. Bonagani, V. Bathula, and V. Kain, Corros. Sci. 131, 340 (2018).CrossRefGoogle Scholar
  37. 37.
    J. W. Park, V. S. Rao, and H. S. Kwon, Corrosion 60, 1099 (2004).CrossRefGoogle Scholar
  38. 38.
    M. Monnot, R. P. Nogueira, V. Roche, G. Berthom, E. Chauveau, R. Estevez, and M. Mantel, Appl. Surf. Sci. 394, 132 (2017).ADSCrossRefGoogle Scholar
  39. 39.
    P. M. Singh, O. Ige, and J. Mahmood, Corrosion 59, 843 (2003).CrossRefGoogle Scholar
  40. 40.
    H. H. Horowitz, Corros. Sci. 23, 353 (1983).CrossRefGoogle Scholar
  41. 41.
    A. Tomio, M. Sagora, T. Doi, H. Amaya, and T. Kudo, Corros. Sci. 98, 391 (2015).CrossRefGoogle Scholar
  42. 42.
    S. I. Cristini, B. Sacchi, S. Guerrini, E. Guerrini, and S. Trasatti, Russ. J. Electrochem. 46, 1094 (2010).CrossRefGoogle Scholar
  43. 43.
    H. Luo, X. Wang, C. Dong, K. Xiao, and X. Li, Corros. Sci. 124, 178 (2017).CrossRefGoogle Scholar
  44. 44.
    C. S. Brandold, M. A. Rosa, L. B. Ramos, R. M. Schroeder, C. F. Malfatti, and I. L. Muller, Mater. Sci. Technol. 33, 227 (2017).CrossRefGoogle Scholar
  45. 45.
    V. S. Moura, L. D. Lima, J. M. Pardal, A. Y. Kina, R. R. A. Corte, and S. S. M. Tavares, Mater. Charact. 59, 1127 (2008).CrossRefGoogle Scholar
  46. 46.
    R. S. Silverstain, O. Sobol, Th. Boellinghaus, W. Unger, and D. Eliezer, J. Alloys Compd. 695, 2689 (2017).CrossRefGoogle Scholar
  47. 47.
    L. F. Garfias-Messias and J. M. Sykes, Corros. Sci. 54, 40 (1998).CrossRefGoogle Scholar
  48. 48.
    S. B. Kim, K. W. Paik, and Y. G. Kim, Mater. Sci. Eng. A 247, 67 (1998).CrossRefGoogle Scholar
  49. 49.
    M. Pohl, O. Stolz, and T. Glogowski, Mater. Charact. 58, 65 (2007).CrossRefGoogle Scholar
  50. 50.
    H.-Y. Ha, T.-H. Lee, C.-G. Lee, and H. Yoo, Corros. Sci. 149, 226 (2019).ADSCrossRefGoogle Scholar
  51. 51.
    A. F. Padilha and R. L. Plaut, in Duplex Stainless Steels, Ed. by I. Alvares-Armas and S. Degallaix-Moreuli (Wiley-ISTE, 2009), p. 115.Google Scholar
  52. 52.
    A. Kasiwaz, N. P. Vennela, S. L. Kamath, and R. K. Khatirkar, Mater. Charact. 74, 55 (2012).CrossRefGoogle Scholar
  53. 53.
    E. A. Melo and R. Magnabosco, Metall. Mater. Trans. A 48, 5273 (2017).CrossRefGoogle Scholar
  54. 54.
    B. R. S. da Silva, F. Salvio, and D. S. dos Santos, Int. J. Hydrogen Energy 40, 17091 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations