Advertisement

Effects Associated with Confined Geometry in Nanocomposites Based on Mesoporous 2D-SBA-15 and 3D-SBA-15 Matrices Containing Sodium Nitrite Nanoparticles

Abstract

Temperature dependences of the ferroelectric order parameter for nanostructured sodium nitrite under heating and cooling were obtained by analyzing the temperature evolution of diffraction spectra of neutron scattering by composites obtained by introducing sodium nitrite into pores of mesoporous 2D-SBA-15 (the average pore diameter is 69(4) Å) and 3D-SBA-15 (94(5) Å) matrices. It was demonstrated that the phase transition to the paraelectric phase in the process of heating occurs at TC = 433 ± 1 K in both nanocomposite materials. It was found that these sizes decrease at approaching to the ferroelectric phase transition point on heating. Temperature hysteresis (~15–20 K) in the temperature dependence of the order parameter between the heating and cooling regimes was revealed.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    M. I. Kay, Ferroelectrics 4, 235 (1972).

  2. 2

    E. V. Colla, E. Yu. Koroleva, Yu. A. Kumzerov, B. N. Savenko, and S. B. Vakhrushev, Ferroelectr., Lett. Sect. 20, 143 (1996).

  3. 3

    A. Naberezhnov, A. Fokin, Yu. Kumzerov, A. Sotnikov, S. Vakhrushev, and B. Dorner, Eur. Phys. J. E 12, s21 (2003).

  4. 4

    S. V. Pan’kova, V. V. Poborchii, and V. G. Solov’ev, J. Phys. Condens. Matter 8, L203 (1996).

  5. 5

    M. Kinka, J. Banys, and A. Naberezhnov, Ferroelectrics 348, 67 (2007).

  6. 6

    A. I. Beskrovny, S. G. Vasilovskii, S. B. Vakhrushev, D. A. Kurdyukov, O. I. Zvorykina, A. A. Naberezhnov, N. M. Okuneva, M. Tovar, E. Rysiakiewicz-Pasek, and P. Jagus, Phys. Solid State 52, 1092 (2010).

  7. 7

    S. Borisov, T. Hansen, Yu. Kumzerov, A. Naberezhnov, V. Simkin, O. Smirnov, A. Sotnikov, M. Tovar, and S. Vakhrushev, Phys. B 350, E1119 (2004).

  8. 8

    A. Fokin, Yu. Kumzerov, E. Koroleva, A. Naberezhnov, O. Smirnov, M. Tovar, S. Vakhrushev, and M. Glazman, J. Electroceram. 22, 270 (2009).

  9. 9

    D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science 279, 548 (1998).

  10. 10

    B. Tian, X. Liu, C. Yu, F. Gao, Q. Luo, S. Xie, B. Tu, and D. Zhao, Chem. Commun., No. 11, 1186 (2002).

  11. 11

    Y.-T. Chan, H.-P. Lin, C.-Y. Mou, and S.-T. Liu, Chem. Commun., No. 23, 2878 (2002).

  12. 12

    P. Yuan, L. Tan, D. Pan, Y. Guo, L. Zhou, J. Yang, J. Zou, and C. Yu, New J. Chem. 35, 2456 (2011).

  13. 13

    O. V. Efimova, E. V. Stukova, E. Yu. Koroleva, and R. V. Sukhanov, Vestn. Amur. Gos. Univ. 79, 165 (2017).

  14. 14

    S. B. Vakhrushev, Yu. A. Kumzerov, A. Fokin, A. A. Naberezhnov, B. Zalar, A. Lebar, and R. Blinc, Phys. Rev. B 70, 132102 (2004).

  15. 15

    C. Tien, E. V. Charnaya, M. K. Lee, S. V. Baryshnikov, S. Y. Sun, D. Michel, and W. Böhlmann, Phys. Rev. B 72, 104105 (2005).

  16. 16

    S. V. Baryshnikov, C. Tien, E. V. Charnaya, M. K. Lee, D. Michel, and W. Böhlmann, Ferroelectrics 363, 177 (2008).

  17. 17

    E. Rysiakiewicz-Pasek, R. Poprawski, J. Polanska, A. Urbanowicz, and A. Sieradzki, J. Non-Cryst. Solids 352, 4309 (2006).

  18. 18

    V. A. Parfenov, I. V. Ponomarenko, and S. A. Novikova, Mater. Chem. Phys. 232, 193 (2019). https://doi.org/10.1016/j.matchemphys.2019.04.087

  19. 19

    A. da Costa Lamas, S.-L. Chang, and S. Caticha-Ellis, Phys. Status Solidi A 68, 173 (1981).

  20. 20

    D. Kucharczyk, A. Pietraszko, and K. Łukaszewicz, Phys. Status Solidi A 37, 287 (1976).

  21. 21

    P. Thompson, D. Cox, and B. Hastings, J. Appl. Phys. 20, 79 (1987).

  22. 22

    J. I. Langford, J. Appl. Phys. 11, 10 (1978).

  23. 23

    I. V. Golosovsky, R. G. Delaplane, A. A. Naberezhnov, and Yu. A. Kumzerov, Phys. Rev. B 69, 132301 (2004).

  24. 24

    G. Bertsch, Science 277, 1619 (1997).

  25. 25

    M. Takagi, J. Phys. Soc. Jpn. 9, 359 (1954).

  26. 26

    M. Zhang, M. Yu. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, Phys. Rev. B 62, 10548 (2000).

  27. 27

    P. Shah and V. Ramaswamy, Microporous Mesoporous Mater. 114, 270 (2008).

  28. 28

    E. Rapoport, J. Chem. Phys. 45, 2721 (1966).

  29. 29

    E. Rysiakiewicz-Pasek, J. Komar, A. Ciźman, and R. Poprawski, J. Non-Cryst. Solids 356, 661 (2010).

Download references

Author information

Correspondence to A. A. Naberezhnov.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naberezhnov, A.A., Stukova, E.V., Alekseeva, O.A. et al. Effects Associated with Confined Geometry in Nanocomposites Based on Mesoporous 2D-SBA-15 and 3D-SBA-15 Matrices Containing Sodium Nitrite Nanoparticles. Tech. Phys. 64, 1866–1871 (2019). https://doi.org/10.1134/S106378421912020X

Download citation