Technical Physics

, Volume 64, Issue 12, pp 1872–1878 | Cite as

Impact of a Dopant Impurity Electronic Structure on Physical Properties, Defect Structure, and Features of Lithium Niobate Doping Technology

  • O. V. MakarovaEmail author
  • M. N. Palatnikov
  • I. V. Biryukova
  • N. V. Sidorov


The macro- and microstructure of doped LiNbO3 crystals is studied, their transmission spectra are investigated, and the effective coefficients characterizing the dopant impurity distribution are determined. We analyze the literature data on phase diagrams of the ternary system Li2O–Nb2O5–dopant oxide and the electron configurations of dopant elements, and the results suggest that this can be used as a basis for designing technological conditions for growing doped lithium niobate crystals and predicting their quality. With p‑elements (boron), structurally and compositionally uniform LiNbO3 crystals can be grown, with the doping impurity not being incorporated in the crystal. s- and d-metals (magnesium and zinc) have a similar effect on the melt and properties of resulting LiNbO3 crystals, which have periodic domain structures and similar types of point defects. Due to their electronic structure, f-metals (cerium) bring the melt to such a structure that this enables the formation of a periodic domain structure in LiNbO3 crystals during their growth.



The work was supported by the Ministry of Education and Science of the Russian Federation (research topic no. 0226-IC-2018-0004, registration number # АААА-А18-118022190125-2), and by the Russian Foundation for Basic Research (grant no. 18-03-00231-а).


The authors declare that they do not have any conflicts of interest.


  1. 1.
    M. N. Palatnikov, I. V. Biryukova, O. E. Kravchenko, S. M. Masloboeva, O. V. Makarova, and V. V. Efremov, Russ. J. Inorg. Chem. 61, 18 (2016). CrossRefGoogle Scholar
  2. 2.
    M. N. Palatnikov, I. V. Biryukova, O. V. Makarova, N. V. Sidorov, N. A. Teplyakova, S. M. Masloboeva, and V. V. Efremov, Perspekt. Mater., No. 1, 5 (2016).Google Scholar
  3. 3.
    O. V. Makarova, M. N. Palatnikov, I. V. Biryukova, N. A. Teplyakov, and N. V. Sidorov, Inorg. Mater. 54, 49 (2018). CrossRefGoogle Scholar
  4. 4.
    M. N. Palatnikov, I. V. Biryukova, S. M. Masloboeva, O. V. Makarova, D. V. Manukovskaya, and N. V. Sidorov, J. Cryst. Growth 386, 113 (2014). ADSCrossRefGoogle Scholar
  5. 5.
    S. M. Masloboeva, M. N. Palatnikov, L. G. Arutyunyan, and D. V. Ivanenko, Izv. S.-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.) 64 (38), 34 (2017).Google Scholar
  6. 6.
    N. V. Sidorov, M. N. Palatnikov, L. A. Bobreva, and N. N. Novikova, Inorg. Mater. 53, 713 (2017). CrossRefGoogle Scholar
  7. 7.
    Metallography and Thermal Processing of Steel. Handbook, Ed. by M. L. Bernshtein and A. G. Rakhshtadt (Metallurgiya, Moscow, 1991), Vol. 2.Google Scholar
  8. 8.
    M. N. Palatnikov, I. V. Biryukova, O. V. Makarova, and V. V. Efremov, O. E. Kravchenko, and V. T. Kalinnikov, Tr. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, No. 31, 434 (2015).Google Scholar
  9. 9.
    M. N. Palatnikov, N. V. Sidorov, R. A. Titov, N. A. Teplyakova, and O. V. Makarova, Perspekt. Mater., No. 6, 5 (2018).
  10. 10.
    C. Huang, S. Wang, and N. Ye, J. Alloys Compd. 502, 211 (2010). CrossRefGoogle Scholar
  11. 11.
    M. N. Palatnikov, N. V. Sidorov, O. V. Makarova, and I. V. Biryukova, Fundamental Aspects of Technology of Strongly Doped Lithium Niobate Crystals (Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, Apatity, 2017).Google Scholar
  12. 12.
    M. N. Palatnikov, N. V. Sidorov, O. V. Makarova, and I. V. Birjukova, Bull. Russ. Acad. Sci.: Phys. 82, 314 (2018). CrossRefGoogle Scholar
  13. 13.
    V. B. Nalbandyan, B. S. Medvedev, V. I. Nalbandyan, and A. V. Chinenova, Izv. Akad. Nauk SSSR. Neorg. Mater. 24, 980 (1988).Google Scholar
  14. 14.
    V. V. Konovalova, Candidate’s Dissertation in Chemistry (Moscow State Univ. of Fine Chemical Technologies, Moscow, 2009).Google Scholar
  15. 15.
    M. Ferriol, A. Dakki, M. T. Cohen-Adad, G. Foulon, A. Brenier, and G. Boulon, J. Cryst. Growth 178, 529538 (1997).CrossRefGoogle Scholar
  16. 16.
    B. C. Grabmaier and F. Otto, J. Cryst. Growth 79, 682 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    M. N. Palatnikov, I. V. Biryukova, O. V. Makarova, V. V. Efremov, O. E. Kravchenko, V. I. Skiba, N. V. Sidorov, and I. N. Efremov, Inorg. Mater. 51, 375 (2015). CrossRefGoogle Scholar
  18. 18.
    M. N. Palatnikov, I. V. Biryukova, O. V. Makarova, N. V. Sidorov, O. E. Kravchenko, and V. V. Efremov, Inorg. Mater. 49, 288 (2013). CrossRefGoogle Scholar
  19. 19.
    M. N. Palatnikov, B. A. Loginov, N. V. Sidorov, O. B. Shcherbina, I. V. Biryukova, V. V. Efremov, P. G. R. Smith, and V. T. Kalinnikov, Inorg. Mater. 43, 68 (2007). CrossRefGoogle Scholar
  20. 20.
    M. Palatnikov, N. Sidorov, K. Bormanis, and P. G. R. Smith, J. Phys. Conf. Ser. 93, 12 (2007). CrossRefGoogle Scholar
  21. 21.
    M. N. Palatnikov, O. B. Shcherbina, and A. A. Kazakov, Inorg. Mater. 44, 305 (2008). CrossRefGoogle Scholar
  22. 22.
    M. Palatnikov, O. Shcherbina, I. Biryukova, and N. Sidorov, Ferroelectrics 374, 41 (2008). CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. V. Makarova
    • 1
    Email author
  • M. N. Palatnikov
    • 1
  • I. V. Biryukova
    • 1
  • N. V. Sidorov
    • 1
  1. 1.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Center, Russian Academy of SciencesApatityRussia

Personalised recommendations