Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Influence of the Preparation Method on Amorphous-Crystalline Transition in Fe84B16 Alloy

  • 26 Accesses


The amorphous-crystalline transition in Fe84B16 alloys prepared by melt spinning and high-energy ball milling was studied. Time-resolved X-ray diffraction showed that the kinetics of transition into a crystalline state depends on the method of preparing a metastable alloy. In amorphous Fe84B16 alloy prepared by melt spinning, crystallization proceeded within a time period of below 1 s and was accompanied by the formation of eutectic α-Fe–Fe3B. At temperatures above 600°C, metastable phase Fe3B was found to transform into Fe2B and α-Fe. In the high-energy ball milling produced alloy, structural changes were accomplished in 4–8 s and the transition into a state with a perfect crystalline structure was caused by the growth of nanocrystallites formed during processing.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. 1

    B. Zhang, W. Hu, and D. Zhu, Phys. B 183, 205 (1993).

  2. 2

    C. Politis, Int. J. Mod. Phys. B 22, 2905 (2008).

  3. 3

    A. Calka and A. P. Radlinski, Appl. Phys. Lett. 58, 119 (1991).

  4. 4

    N. F. Shkodich, S. G. Vadchenko, A. A. Nepapushev, D. Yu. Kovalev, I. D. Kovalev, S. Ruvimov, A. S. Rogachev, and A. S. Mukasyan, J. Alloys Compd. 741, 575 (2018).

  5. 5

    T. F. Grigor’eva, A. P. Barinova, and N. Z. Lyakhov, Mechanochemical Synthesis in Metallic Systems (Parallel’, Novosibirsk, 2008).

  6. 6

    T. Kulik, J. Non-Cryst. Solids 287, 145 (2001).

  7. 7

    T. Nakajima, E. Kita, and H. Ino, J. Jpn. Inst. Met. Mater. 51, 263 (1987).

  8. 8

    M. W. Ruckman, R. A. Levy, A. Kessler, and R. J. Hasegama, J. Non-Cryst. Solids 40, 393 (1980).

  9. 9

    A. A. Novakova and T. Yu. Kiseleva, Vestn. Mosk. Univ. Fiz. Astron. 36, 56 (1995).

  10. 10

    A. A. Novakova, T. Yu. Kiseleva, and I. A. Aleksandrova, Vestn. Mosk. Univ. Fiz. Astron. 35, 102 (1994).

  11. 11

    A. S. Rogachev, S. G. Vadchenko, A. S. Aronin, S. Rouvimov, A. A. Nepapushev, I. D. Kovalev, F. Baras, O. Politano, S. A. Rogachev, and A. S. Mukasyan, Appl. Phys. Lett. 111, 093105 (2017).

  12. 12

    G. E. Abrosimova, A. S. Aronin, S. V. Dobatkin, I. I. Zver’kova, D. V. Matveev, O. G. Rybchenko, and E. V. Tat’yanin, Phys. Solid State 49, 1034 (2007).

  13. 13

    D. Yu. Kovalev and V. I. Ponomarev, Int. J. Self-Propag. High-Temp. Synth. 28, 114 (2019).

  14. 14

    K. Suzuki, H. Fujimori, and K. Hashimoto, Amorphous Metals, Ed. by S. Masumoto (Metallurgiya, Moscow, 1987).

  15. 15

    K. I. Portnoi, M. Kh. Levinskaya, and V. M. Romashov, Poroshk. Metall., No. 8, 66 (1969).

  16. 16

    V. V. Boldyrev, in Fundamentals of Mechanical Activation, Mechanosynthesis, and Mechanochemical Technology, Ed. by E. G. Avvakumov (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2009), p. 15.

  17. 17

    U. Herold and U. Koster, Z. Metallkd. 69, 326 (1978).

  18. 18

    G. E. Abrosimova and A. S. Aronin, Int. J. Rapid Solidif. 6, 29 (1991).

Download references


The work was supported by the State-supported research program for the Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences (no. 44.1).

Author information

Correspondence to D. Yu. Kovalev.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by O. Golosova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovalev, D.Y., Shkodich, N.F., Vadchenko, S.G. et al. Influence of the Preparation Method on Amorphous-Crystalline Transition in Fe84B16 Alloy. Tech. Phys. 64, 1808–1813 (2019). https://doi.org/10.1134/S1063784219120119

Download citation