Advertisement

Technical Physics

, Volume 64, Issue 12, pp 1742–1748 | Cite as

Development of Technological Principles for Creating a System of Microfocus X-Ray Tubes Based on Silicon Field Emission Nanocathodes

  • N. A. Djuzhev
  • G. D. DeminEmail author
  • N. A. Filippov
  • I. D. Evsikov
  • P. Yu. Glagolev
  • M. A. Makhiboroda
  • N. I. Chkhalo
  • N. N. Salashchenko
  • S. V. Filippov
  • A. G. Kolosko
  • E. O. Popov
  • V. A. Bespalov
23rd INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS,” Nizhny Novgorod, March 11–14, 2019

Abstract

The technological prospects for the creation of a system of microfocus X-ray tubes with the use of silicon field emission of nanocathodes have been discussed. A numerical analysis of the field-emission current from a nanoscale semiconductor cathode regulated by voltage on a grid electrode has been carried out on the basis of which a scheme for controlling the elements of the matrix of field-emission cathode assemblies has been proposed. The current–voltage characteristics of silicon field emission nanocathodes have been measured. They are in good agreement with the theoretical estimates of the field-emission current. A full technological cycle of the development of elements of microfocus X-ray tubes (a set of field-emission cathode assemblies and a set of anode assemblies) has been performed. The results can be used to create systems of microfocus X-ray tubes for nanolithographic equipment of a new generation.

Notes

FUNDING

The work was performed by a group of authors, which includes N.A. Djuzhev, G.D. Demin, N.A. Filippov, I.D. Evsikov, P.Yu. Glagolev, M.A. Makhiboroda, N.I. Chkhalo, and N.N. Salashchenko, who used the equipment of the Collective Use Center Microsystem Technology and Electronic Component Base, National Research University of Electronic Technology, supported by the Ministry of Education and Science of Russia as part of project 14.578.21.0250, RFMEFI57817X0250 using the Center for National Technology Initiative Sensory.

CONFLICT OF INTEREST

The authors state that they do not have any conflicts of interest.

REFERENCES

  1. 1.
    S. A. Guerrera and A. I. Akinwande, Nanotechnology 27, 295302 (2016).  https://doi.org/10.1088/0957-4484/27/29/295302 CrossRefGoogle Scholar
  2. 2.
    S. F. Wang, H. Y. Chiang, Y. J. Liao, R. S. Liu, C. C. Cheng, H. W. Yang, S. W. Wang, Y. C. Lin, and S. M. Hsu, Radiat. Phys. Chem. 158, 188 (2019).  https://doi.org/10.1016/j.radphyschem.2019.02.005 ADSCrossRefGoogle Scholar
  3. 3.
    G. D. Demin, N. A. Djuzhev, N. A. Filippov, P. Yu. Glagolev, I. D. Evsikov, and N. N. Patyukov, J. Vac. Sci. Technol. B 37, 022903 (2019).  https://doi.org/10.1116/1.5068688 CrossRefGoogle Scholar
  4. 4.
    N. A. Djuzhev, G. D. Demin, T. A. Gryazneva, A. E. Pestov, N. N. Salashchenko, N. I. Chkhalo, and F. A. Pudonin, Bull. Lebedev Phys. Inst. 45, 1 (2018).  https://doi.org/10.3103/S1068335618010013 ADSCrossRefGoogle Scholar
  5. 5.
    N. N. Salashchenko, N. I. Chkhalo, and N. A. Djuzhev, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 10, 10 (2018).  https://doi.org/10.1134/S1027451018050324 CrossRefGoogle Scholar
  6. 6.
    A. Ya. Lopatin, D. E. Par’ev, A. E. Pestov, N. N. Salashchenko, N. I. Chkhalo, G. D. Demin, N. A. Dyuzhev, M. A. Makhiboroda, and A. A. Kochetkov, J. Exp. Theor. Phys. 127, 985 (2018).  https://doi.org/10.1134/S1063776118100175 ADSCrossRefGoogle Scholar
  7. 7.
    N. I. Chkhalo and N. N. Salashchenko, AIP Adv. 3, 082130 (2013).  https://doi.org/10.1063/1.4820354 ADSCrossRefGoogle Scholar
  8. 8.
    N. A. Djuzhev, G. D. Demin, P. Yu. Glagolev, M. A. Makhiboroda, and N. N. Patyukov, Proc. 31st Int. Vacuum Nanoelectronics Conf., Kyoto, Japan,2018, p. 116.  https://doi.org/10.1109/IVNC.2018.8520046
  9. 9.
    R. G. Forbes, Proc. 31st Int. Vacuum Nanoelectronics Conf., Kyoto, Japan,2018, p. 126.  https://doi.org/10.1109/IVNC.2018.8520077
  10. 10.
  11. 11.
    K. Eimre, A. Aabloo, F. Djurabekova, and V. Zadin, J. Appl. Phys. 118, 033303 (2015).  https://doi.org/10.1063/1.4926490 ADSCrossRefGoogle Scholar
  12. 12.
    K. L. Jensen, Introduction to the Physics of Electron Emission (Wiley, 2018).Google Scholar
  13. 13.
    E. O. Popov, A. G. Kolosko, S. V. Filippov, P. A. Romanov, and I. L. Fedichkin, Mater. Today: Proc. 5, 13800 (2018).  https://doi.org/10.1016/j.matpr.2018.02.021 CrossRefGoogle Scholar
  14. 14.
    E. O. Popov, A. G. Kolosko, S. V. Filippov, P. A. Romanov, E. I. Terukov, A. V. Shchegolkov, and A. G. Tkachev, Appl. Surf. Sci. 424, 239 (2017).  https://doi.org/10.1016/j.apsusc.2017.04.120 ADSCrossRefGoogle Scholar
  15. 15.
    Cold Cathodes, Ed. by M. I. Elinson (Sovetskoe Radio, Moscow, 1974).Google Scholar
  16. 16.
    J. R. Maldonado and M. Peckerar, Microelectron. Eng. 161, 87 (2016).  https://doi.org/10.1016/j.mee.2016.03.052 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Djuzhev
    • 1
  • G. D. Demin
    • 1
    Email author
  • N. A. Filippov
    • 1
  • I. D. Evsikov
    • 1
  • P. Yu. Glagolev
    • 1
  • M. A. Makhiboroda
    • 1
  • N. I. Chkhalo
    • 2
  • N. N. Salashchenko
    • 2
  • S. V. Filippov
    • 3
  • A. G. Kolosko
    • 3
  • E. O. Popov
    • 3
  • V. A. Bespalov
    • 1
  1. 1.National Research University of Electronic Technology MIETZelenograd, MoscowRussia
  2. 2.Institute for Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia
  3. 3.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations