Advertisement

Technical Physics

, Volume 64, Issue 12, pp 1827–1836 | Cite as

Formation of Low-Resistivity Au/Mo/Ti Ohmic Contacts to p-Diamond Epitaxial Layers

  • M. N. DrozdovEmail author
  • E. V. Demidov
  • Yu. N. Drozdov
  • S. A. Kraev
  • V. I. Shashkin
  • E. A. Arkhipova
  • M. A. Lobaev
  • A. L. Vikharev
  • A. M. Gorbachev
  • D. B. Radishchev
  • V. A. Isaev
  • S. A. Bogdanov
SOLID STATE ELECTRONICS

Abstract

The formation of Au/Mo/Ti ohmic contacts to p-diamond epitaxial films has been studied. Specifically, the influence of annealing on the electrical properties and structure of contacts has been investigated. It has been shown that the upper gold layer protects the contact system against oxidation up to 850°C during RTA unlike the case of a “simplified” Au-free Mo/Ti system frequently used in today’s solutions. In Mo-free Au/Ti systems, high-temperature annealing causes effective diffusion of titanium into the gold layer, which deteriorates the protective properties of the latter and enhances oxygen diffusion toward the interface with diamond. Oxidation of the Ti/C contact area prevents the formation of a titanium carbide conducting layer, which has high adhesion to diamond. The role of various factors, namely, annealing to form titanium carbide, heavy doping of diamond with boron, and crystal perfection of diamond films, in lowering the contact resistance, has been estimated. For doped epitaxial films grown on single-sector substrates, unalloyed ohmic contacts with a record low contact resistance of 4 × 10–7 Ω/cm2 have been obtained.

Notes

FUNDING

This study was financially supported by the Russian Foundation for Basic Research (grant no. 18-02-00565) and the Russian Science Foundation (grant no. 17-19-01580).

CONFLICT OF INTEREST

The authors claim that they do not have any conflicts of interest.

REFERENCES

  1. 1.
    J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, et al., Adv. Electron. Mater 4, 1600501 (2018).  https://doi.org/10.1002/aelm.201600501 CrossRefGoogle Scholar
  2. 2.
    Power Electronics Device Applications of Diamond Semiconductors, Ed. by S. Koizumi, H. Umezawa, J. Pernot, and M. Suzuki (Elsevier, 2018).Google Scholar
  3. 3.
    T. V. Blank and Yu. A. Gol’dberg, Semiconductors 41, 1263 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    J. F. Prins, J. Phys. D: Appl. Phys. 22, 1562 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    R. Kalish, Appl. Surf. Sci. 117/118, 558 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    V. Venkatesan, D. M. Malta, K. Das, and A. M. Belu, J. Appl. Phys. 74, 1179 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    J. C. Pinero, M. P. Villar, D. Araujo, J. Montserrat, B. Antunez, and P. Godignon, Phys. Status Solidi A 214, 1700230 (2017).  https://doi.org/10.1002/pssa.201700230 ADSCrossRefGoogle Scholar
  8. 8.
    T. Tachibana, B. E. Williams, and J. T. Glass, Phys. Rev. B 45, 11975 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    J. Nakanishi, A. Otsuki, T. Oku, O. Ishiwata, and M. Murakami, J. Appl. Phys. 76, 2293 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    M. Yokoba, Y. Koide, A. Otsuki, F. Ako, T. Oku, and M. Murakami, J. Appl. Phys. 81, 6815 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    P. E. Viljoen, E. S. Lambers, and P. H. Holloway, J. Vac. Sci. Technol. B 12, 2997 (1994).  https://doi.org/10.1116/1.587549 CrossRefGoogle Scholar
  12. 12.
    K. L. Moazed, J. R. Zeidler, and M. J. Taylor, J. Appl. Phys. 68, 2246 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Chen, M. Ogura, S. Yamasaki, and H. Okushi, Semicond. Sci. Technol. 20, 860 (2005).  https://doi.org/10.1088/0268-1242/20/8/041 ADSCrossRefGoogle Scholar
  14. 14.
    S. Kono, T. Teraji, H. Kodama, K. Ichikawa, S. Ohnishi, and A. Sawabe, Diamond Related Mater. 60, 117 (2015).  https://doi.org/10.1016/j.diamond.2015.10.028 ADSCrossRefGoogle Scholar
  15. 15.
    D. Zhao, F. N. Li, Z. C. Liu, X. D. Chen, Y. F. Wang, G. Q. Shao, T. F. Zhu, M. H. Zhang, J. W. Zhang, J. J. Wang, W. Wang, and H. X. Wang, Appl. Surf. Sci. 443, 361 (2018).  https://doi.org/10.1016/j.apsusc.2018.03.015 ADSCrossRefGoogle Scholar
  16. 16.
    W. P. Leroy, C. Detavernier, R. L. van Meirhaeghe, A. J. Kellock, and C. Lavoie, J. Appl. Phys. 99, 063704 (2006).  https://doi.org/10.1063/1.2180436 ADSCrossRefGoogle Scholar
  17. 17.
    W. P. Leroy, C. Detavernier, R. L. van Meirhaeghe, and C. Lavoie, J. Appl. Phys. 101, 053714 (2007).  https://doi.org/10.1063/1.2561173 ADSCrossRefGoogle Scholar
  18. 18.
    S. Ohmagari, T. Matsumoto, H. Umezawa, and Y. Mokuno, MRS Adv. 1, 3489 (2016).  https://doi.org/10.1557/adv.2016.471 CrossRefGoogle Scholar
  19. 19.
    F. Fang, C. A. Hewett, M. G. Fernandes, and S. S. Lau, IEEE Trans. Electron Devices 36, 1783 (1989).ADSCrossRefGoogle Scholar
  20. 20.
    M. Werner, O. Dorsch, H.-U. Baerwind, E. Obermeier, C. Johnston, P. R. Chalker, and S. Romani, IEEE Trans. Electron Devices 42, 1334 (1995).ADSGoogle Scholar
  21. 21.
    M. Werner, Semicond. Sci. Technol. 18, 41 (2003).  https://doi.org/10.1088/0268-1242/18/3/306 ADSCrossRefGoogle Scholar
  22. 22.
    G. R. Brandes, C. P. Beetz, C. F. Feger, R. W. Wright, and J. L. Davidson, Diamond Relat. Mater. 8, 1936 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    G. Civrac, S. Msolli, J. Alexis, O. Dalverny, and H. Schneider, Electron. Lett. 46, 791 (2010).  https://doi.org/10.1049/el.2010.0803 CrossRefGoogle Scholar
  24. 24.
    M. P. Dukhnovskii, A. K. Ratnikova, and Yu. Yu. Fedorov, RF Patent No. 2436189, Byull. Izobret., No. 34 (2011).Google Scholar
  25. 25.
    L. A. Vikharev, A. M. Gorbachev, M. A. Lobaev, A. B. Muchnikov, D. B. Radishev, V. A. Isaev, V. V. Chernov, S. A. Bogdanov, M. N. Drozdov, and J. E. Butler, Phys. Status Solidi RRL 10, 324 (2016).  https://doi.org/10.1002/pssr.201510453 CrossRefGoogle Scholar
  26. 26.
    M. N. Drozdov, Yu. N. Drozdov, M. A. Lobaev, and P. A. Yunin, Tech. Phys. Lett. 44, 297 (2018).  https://doi.org/10.1134/S106378501804003X ADSCrossRefGoogle Scholar
  27. 27.
    M. P. Alegre, D. Araujo, A. Fiori, J. C. Pinero, F. Lloret, M. P. Villar, P. Achatz, G. Chicot, E. Bustarret, and F. Jomard, Appl. Phys. Lett. 105, 173103 (2014).  https://doi.org/10.1063/1.4900741 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. N. Drozdov
    • 1
    Email author
  • E. V. Demidov
    • 1
  • Yu. N. Drozdov
    • 1
  • S. A. Kraev
    • 1
  • V. I. Shashkin
    • 1
  • E. A. Arkhipova
    • 1
  • M. A. Lobaev
    • 2
  • A. L. Vikharev
    • 2
  • A. M. Gorbachev
    • 2
  • D. B. Radishchev
    • 2
  • V. A. Isaev
    • 2
  • S. A. Bogdanov
    • 2
  1. 1.Institute of Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Institute of Applied Physics, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations