Technical Physics

, Volume 64, Issue 12, pp 1821–1826 | Cite as

Sol-Gel Technology Adaptation of Nanostructured Zinc Oxide for Flexible Electronics

  • I. A. Averin
  • I. A. ProninEmail author
  • N. D. Yakushova
  • A. A. Karmanov
  • E. A. Alimova
  • S. E. Igoshina
  • V. A. Moshnikov
  • E. I. Terukov


The possibility of replacing classical sol-gel operation methods of high-temperature annealing by photo-annealing using ultraviolet-range radiation has been analyzed. A technique for synthesizing hierarchically organized zinc oxide films using sol-gel technology based on the parallel combination of low-temperature treatment and UV photo-annealing is proposed. Spectroscopic studies of the qualitative composition of the film-forming sol and nanomaterials based on it, obtained on various types of substrates, have been carried out before and after initiation of photochemical reactions.



The work was supported by the Russian Ministry of Education and Science (project no. 16.897.2017/PCh), Russian Foundation for Basic Research (project no. 19-08-00924), and a scholarship of the President of the Russian Federation (SP-3800.2018.1).


The authors declare that they do not have any conflicts of interest.


  1. 1.
    J. Kim, H. Yoo, V. A. P. Ba, N. Shin, and S. Hong, Sci. Rep. 8, 11958 (2018). ADSCrossRefGoogle Scholar
  2. 2.
    H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong, W. Zhang, and J. Xiong, Sci. Rep. 9, 3916 (2019). ADSCrossRefGoogle Scholar
  3. 3.
    E. Abad, S. Zampolli, S. Marco, A. Scorzoni, B. Mazzolai, A. Juarros, D. Gómez, I. Elmi, G.-C. Cardinali, J. M. Gómez, F. Palacio, M. Cicioni, A. Mondini, T. Becker, and I. Sayhan, Sens. Actuators, B 127, 2 (2007). CrossRefGoogle Scholar
  4. 4.
    G. Konvalina and H. Haick, Acc. Chem. Res. 47, 66 (2014). CrossRefGoogle Scholar
  5. 5.
    J. Koskela, J. Sarfraz, P. Ihalainen, A. Määttänen, P. Pulkkinen, H. Tenhu, T. Nieminen, A. Kilpelä, and J. Peltonen, Sens. Actuators, B 218, 89 (2015). CrossRefGoogle Scholar
  6. 6.
    S.-W. Chiu and K.-T. Tang, Sensors 13, 14214 (2013). CrossRefGoogle Scholar
  7. 7.
    D. Briand, A. Oprea, J. Courbat, and N. Bârsan, Mater. Today 14, 416 (2011). 10.1016/S1369-7021(11)70186-9CrossRefGoogle Scholar
  8. 8.
    G. Yang, C. Lee, J. Kim, F. Ren, and S. J. Pearton, Phys. Chem. Chem. Phys. 15, 1798 (2013). CrossRefGoogle Scholar
  9. 9.
    J.-W. Han, B. Kim, J. Li, and M. Meyyappan, Appl. Phys. Lett. 102, 193104 (2013). ADSCrossRefGoogle Scholar
  10. 10.
    K. Parikh, K. Cattanach, R. Rao, D.-S. Suh, A. Wu, and S. K. Manohar, Sens. Actuators, B 113, 55 (2006). CrossRefGoogle Scholar
  11. 11.
    C. Lee, J. Ahn, K. B. Lee, D. Kim, and J. Kim, Thin Solid Films 520, 5459 (2012). ADSCrossRefGoogle Scholar
  12. 12.
    J. Janata and M. Josowicz, Nat. Mater. 2, 19 (2003). ADSCrossRefGoogle Scholar
  13. 13.
    E. Comini, Sensors 13, 10659 (2013). CrossRefGoogle Scholar
  14. 14.
    W. Kim, B. Jang, H.-S. Lee, and W. Lee, Sens. Actuators, B 224, 547 (2016). CrossRefGoogle Scholar
  15. 15.
    I. A. Pronin, N. V. Kaneva, A. S. Bozhinova, I. A. Averin, K. I. Papazova, D. Ts. Dimitrov, and V. A. Moshnikov, Kinet. Catal. 55, 167 (2014).CrossRefGoogle Scholar
  16. 16.
    F. Fedorov, M. Vasilkov, A. Lashkov, A. Varezhnikov, D. Fuchs, Ch. Kübel, M. Bruns, M. Sommer, and V. Sysoev, Sci. Rep. 7, 9732 (2017). ADSCrossRefGoogle Scholar
  17. 17.
    D. Tz. Dimitrov, N. K. Nikolaev, K. I. Papazova, L. K. Krasteva, I. A. Pronin, I. A. Averin, A. S. Bojinova, A. Ts. Georgieva, N. D. Yakushova, T. V. Peshkova, A. A. Karmanov, N. V. Kaneva, and V. A. Moshnikov, Appl. Surf. Sci. 392, 95 (2017). CrossRefGoogle Scholar
  18. 18.
    I. A. Pronin, N. D. Yakushova, D. Ts. Dimitrov, L. K. Krasteva, K. I. Papazova, A. A. Karmanov, I. A. Averin, A. Ts. Georgieva, V. A. Moshnikov, and E. I. Terukov, Tech. Phys. Lett. 43, 825 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    V. A. Moshnikov, Yu. M. Tairov, T. V. Khamova, and O. A. Shilova, Sol-Gel Processing of Micro- and Nanocomposites (Khimizdat, St. Petersburg, 2013).Google Scholar
  20. 20.
    Y.-H. Kim, J.-S. Heo, T.-H. Kim, S. Park, M.-H. Yoon, J. Kim, M. S. Oh, G.-R. Yo, Y.-Y. Noh, and S. K. Park, Nature 489, 128 (2012). ADSCrossRefGoogle Scholar
  21. 21.
    I. A. Pronin, I. A. Averin, N. D. Yakushova, D. T. Dimitrov, L. K. Krasteva, K. I. Papazova, A. S. Chanachev, A. S. Bojinova, A. T. Georgieva, and V. A. Moshnikov, Sens. Actuators, A 206, 88 (2014). CrossRefGoogle Scholar
  22. 22.
    E. I. Krupkin, I. A. Averin, I. A. Pronin, A. A. Karmanov, and N. D. Yakushova, Nano- Mikrosist. Tekh. 21 (1), 23 (2019).Google Scholar
  23. 23.
    A. Gómez-Nuñez, S. Alonso-Gil, C. López, P. Roura, and A. Vilà, J. Phys. Chem. C 121, 23839 (2017). CrossRefGoogle Scholar
  24. 24.
    I. A. Averin, A. A. Karmanov, V. A. Moshnikov, I. A. Pronin, S. E. Igoshina, A. P. Sigaev, and E. I. Terukov, Phys. Solid State 57, 2373 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. A. Averin
    • 1
  • I. A. Pronin
    • 1
    • 2
    Email author
  • N. D. Yakushova
    • 1
  • A. A. Karmanov
    • 1
  • E. A. Alimova
    • 3
  • S. E. Igoshina
    • 1
  • V. A. Moshnikov
    • 2
  • E. I. Terukov
    • 2
    • 4
  1. 1.Pensa State UniversityPensaRussia
  2. 2.St. Petersburg State Electrotechnical University LETISt. PetersburgRussia
  3. 3.JSC Scientific Research Institute of Electro-Mechanical DevicesPensaRussia
  4. 4.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations