Advertisement

Technical Physics

, Volume 64, Issue 11, pp 1590–1595 | Cite as

Optical, Mechanical, and Thermal Properties of Free-Standing MoSi2Nx and ZrSi2Ny Nanocomposite Films

  • S. Yu. Zuev
  • A. Ya. Lopatin
  • V. I. Luchin
  • N. N. Salashchenko
  • D. A. Tatarskiy
  • N. N. TsybinEmail author
  • N. I. Chkhalo
Article
  • 16 Downloads

Abstract

The optical, mechanical, and thermal properties of free-standing structures based on nitrided molybdenum and zirconium silicides have been studied. It has been shown that silicide nitriding considerably improves the thermal stability of films. While as-prepared amorphous MoSi2 and ZrSi2 films crystallize in the interval 330–370°C, nitriding of films has made it possible to increase their working temperatures in vacuum to 600–700°C (at least, for x ≥ 0.25, y ≥ 1.3). Tensile tests have shown that the ultimate strength of MoSi2Nx films (0 ≤ x ≤ 0.55) depends on nitrogen content only slightly. Comparison between the properties of MoSi2Nx and ZrSi2Ny films magnetron-sputtered at the same partial pressure of nitrogen has demonstrated that with transmission coefficients of films at a wavelength of 13.5 nm being close to each other, ZrSi2 films are more effective as protection coatings (they are less prone to oxidation and more degradation-resistant).

Notes

ACKNOWLEDGMENTS

This study was carried out using equipment from the Center of Collective Use Physics and Technology of Micro- and Nanostructures, Institute of Physics of Microstructures, Russian Academy of Sciences (Nizhny Novgorod, Russia).

FUNDING

This study was supported financially by the Russian Foundation for Basic Research (project nos. 18-42-52007 and 19-07-00173).

CONFLICT OF INTEREST

The authors claim that do not have any conflicts of interest.

REFERENCES

  1. 1.
    I. Pollentier, J. Vanpaemel, J. U. Lee, C. Adelmann, H. Zahedmanesh, C. Huyghebaert, and E. E. Gallagher, Proc. SPIE 9776, 977620 (2016).CrossRefGoogle Scholar
  2. 2.
    E. B. Klyuenkov, A. Ya. Lopatin, V. I. Luchin, N. N. Salashchenko, and N. N. Tsybin, Quantum Electron. 43, 388 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    N. I. Chkhalo, M. N. Drozdov, E. B. Kluenkov, S. V. Kuzin, A. Ya. Lopatin, V. I. Luchin, N. N. Salashchenko, N. N. Tsybin, and S. Yu. Zuev, Appl. Opt. 55, 4683 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    M. Van de Kerkhof, H. Jasper, L. Levasier, R. Peeters, R. van Es, J.-W. Bosker, A. Zdravkov, E. Lenderink, F. Evangelista, P. Broman, B. Bilski, and T. Last, Proc. SPIE 10143, 101430D (2017).Google Scholar
  5. 5.
    F. Scholze, C. Laubis, M. Krumrey, M. Y. Timmermans, I. Pollentier, and E. E. Gallagher, Proc. SPIE 10451, 104510R (2017).Google Scholar
  6. 6.
    P. J. Van Zwol, M. Nasalevich, W. P. Voorthuijzen, E. Kurganova, A. Notenboom, D. Vles, M. Peter, W. Symens, A. J. M. Giesbers, J. H. Klootwijk, R. W. E. van de Kruijs, and W. J. van der Zande, Proc. SPIE 10451, 104510O (2017).Google Scholar
  7. 7.
    N. I. Chkhalo, M. N. Drozdov, S. A. Gusev, A. Ya. Lopatin, V. I. Luchin, N. N. Salashchenko, D. A. Tatarskiy, N. N. Tsybin, and S. Yu. Zuev, Appl. Opt. 58, 21 (2019).ADSCrossRefGoogle Scholar
  8. 8.
    N. I. Chkhalo, M. N. Drozdov, E. B. Kluenkov, A. Ya. Lopatin, V. I. Luchin, N. N. Salashchenko, N. N. Tsybin, L. A. Sjmaenok, V. E. Banine, and A.  M.  Yakunin, J. Micro/Nanolithogr., MEMS, MOEMS 11, 021115 (2012).Google Scholar
  9. 9.
    T. C. Chou and T. G. Neih, Thin Solid Films 214, 48 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    I. A. Saladukhin, G. Abadias, V. V. Uglov, S. V. Zlotski, A. Michel, and J. van Vuuren, Surf. Coat. Technol. 332, 428 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Govindarajan, J. J. Moore, J. Disam, and C. Suryanarayana, Metall. Mater. Trans. A 30, 799 (1999).CrossRefGoogle Scholar
  12. 12.
    A. Kuchuk, E. Kaminska, A. Piotrowska, K. Golaszewska, E. Dynowska, O. S. Lytvyn, L. Nowicki, and R. Ratajczak, Thin Solid Films 459, 292 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    M. S. Bibishkin, D. P. Chekhonadskih, N. I. Chkhalo, E. B. Kluyenkov, A. E. Pestov, N. N. Salashchenko, L. A. Shmaenok, I. G. Zabrodin, and S. Yu. Zuev, Proc. SPIE 5401, 8 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    M. S. Bibishkin, N. I. Chkhalo, S. A. Gusev, E. B. Kluenkov, A. Y. Lopatin, V. I. Luchin, A. E. Pestov, N. N. Salashchenko, L. A. Shmaenok, N. N. Tsybin, and S. Y. Zuev, Proc. SPIE 7025, 702502 (2008).CrossRefGoogle Scholar
  15. 15.
    S. Zhang, D. Sun, Y. Fu, and H. Du, Surf. Coat. Technol. 198, 2 (2005).CrossRefGoogle Scholar
  16. 16.
    S. Edalatpour and M. Francoeur, J. Quant. Spectrosc. Radiat. Transfer 118, 75 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    J. S. Reid, E. Kolawa, R. P. Ruiz, and M.-A. Nicolet, Thin Solid Films 236, 319 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. Yu. Zuev
    • 1
  • A. Ya. Lopatin
    • 1
  • V. I. Luchin
    • 1
  • N. N. Salashchenko
    • 1
  • D. A. Tatarskiy
    • 1
  • N. N. Tsybin
    • 1
    Email author
  • N. I. Chkhalo
    • 1
  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations