Technical Physics

, Volume 64, Issue 11, pp 1709–1715 | Cite as

Bi-Substituted Iron Garnet Films for Thermomagnetic Recording, Photonics, and Plasmonics: Optimization of Synthesis Conditions Using Scanning Probe Microscopy

  • A. R. Prokopov
  • T. V. MikhailovaEmail author
  • E. V. Danishevskaya
  • A. N. Shaposhnikov
  • V. N. Berzhansky
  • A. V. Karavainikov
  • A. S. Nedviga
  • I. A. Nauhatsky
  • E. T. Milyukova


We present the results of studies on the optimization of the synthesis of Bi-substituted iron garnet (Bi : IG) films by liquid-phase epitaxy and vacuum deposition followed by crystallization. The effect of the parameter of mismatch between the crystal lattices of the film and the substrate on the functional properties of thin single-crystal high-coercive Bi : IG films is demonstrated. The regime of high-temperature annealing of deposited films was optimized in order to form layers with a high bismuth concentration for magnetophotonic and magnetoplasmonic structures. It was established that annealing of the Bi : IG layer under a SiO2 layer deposited on top will reduce the roughness of interfaces in multilayer structures.



The studies are supported by the Ministry of Science and Higher Education of the Russian Federation within the fundamental part of the state assignment (project no. 3.7126.2017/8.9) and in the framework of Vernadsky Crimean Federal University grant no. VG13/2018.


The authors declare that they do not have any conflicts of interest.


  1. 1.
    M. Inoue, A. V. Baryshev, T. Goto, S. M. Baek, S. Mito, H. Takagi, and P. B. Lim, in Magnetophotonics, Ed. by M. Inoue, M. Levy, and A. V. Baryshev (Springer, 2013), p. 163.CrossRefGoogle Scholar
  2. 2.
    I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, J. Phys. D 36, R277 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, J. Phys. D 39, R151 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    V. N. Berzhansky, A. V. Karavainikov, T. V. Mikhailova, A. R. Prokopov, A. N. Shaposhnikov, A. G. Shumilov, N. V. Lugovskoy, E. Y. Semuk, M. F. Kharchenko, I. M. Lukienko, Yu. M. Kharchenko, and V. I. Belotelov, J. Magn. Magn. Mater. 440, 175 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    V. J. Fratello, S. J. Licht, C. D. Brandle, H. M. O’Bryan, and F. A. Baiocchi, J. Cryst. Growth 142, 93 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    P. Hansen and K. Witter, J. Appl. Phys. 58, 454 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    A. R. Prokopov, P. M. Vetoshko, A. G. Shumilov, A. N. Shaposhnikov, A. N. Kuz’michev, N. N. Koshlyakova, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, J. Alloys Compd. 671, 403 (2016).CrossRefGoogle Scholar
  8. 8.
    V. Vishnevskii, A. Nesteruk, A. Nedviga, S. Dubinko, and A. Prokopov, Sens. Lett. 5, 29 (2007).CrossRefGoogle Scholar
  9. 9.
    S. Dubinko, A. Nedviga, V. Vishnevskii, A. Shaposhnikov, V. Yagupov, A. Nesteruk, and A. Prokopov, Tech. Phys. Lett. 31, 979 (2005).CrossRefGoogle Scholar
  10. 10.
    V. Berzhansky, A. Nedviga, V. Vishnevskii, and A. Prokopov, Solid State Phenom. 152153, 11 (2009).Google Scholar
  11. 11.
    V. N. Berzhansky, V. G. Vishnevskii, A. S. Nedviga, and A. G. Nesteruk, J. Magn. 14, 108 (2009).CrossRefGoogle Scholar
  12. 12.
    V. N. Berzhansky, V. G. Vishnevskii, H. T. Milyukova, A. S. Nedviga, A. G. Nesteruk, and H. V. Danishevskaya, Acta Phys. Pol. A 118, 864 (2010).CrossRefGoogle Scholar
  13. 13.
    V. G. Vishnevskii, A. S. Nedviga, A. G. Nesteruk, V. N. Berzhanskii, and I. V. Dudarenko, Uch. Zap. Tavricheskogo Nats. Univ. Ser. Fiz.-Mat. Nauki 23 (1), 158 (2010).Google Scholar
  14. 14.
    Yu. E. Vysokikh, S. Yu. Krasnoborod’ko, V. I. Shevyakov, V. N. Berzhanskii, T. V. Mikhailova, A. N. Shaposhnikov, A. R. Prokopov, and A. S. Nedviga, Izv. Vyssh. Uchebn. Zaved., Elektron. 22, 596 (2017).Google Scholar
  15. 15.
    V. Berzhansky, Y. Danishevskaya, A. Nedviga, and M. Bektemirova, J. Phys.: Conf. Ser. 1124, 061006 (2018).Google Scholar
  16. 16.
    Y. V. Danishevskaya, A. S. Krikun, A. S. Nedviga, and V. N. Berzhansky, J. Phys.: Conf. Ser. 917, 072004 (2017).Google Scholar
  17. 17.
    M.-Y. Chern and J.-S. Liaw, Jpn. J. Appl. Phys. 36, 1049 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    S. Kahl and A. M. Grishin, Appl. Phys. Lett. 84, 1438 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    D. O. Dzibrou and A. M. Grishin, J. Appl. Phys 106, 043901 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    S. Leitenmeier, T. Koerner, J. Griesbauer, and M. Herbort, J. Cryst. Growth 310, 5392 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    M. Veis, E. Lišková, R. Antoš, Š. Višňovský, N. Kumar, D. S. Misra, N. Venkataramani, S. Prasad, and R. Krishnan, Thin Solid Films 519, 8041 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    M. Gomi, T. Tanida, and M. Abe, J. Appl. Phys. 57, 3888 (1985).ADSCrossRefGoogle Scholar
  23. 23.
    T. Suzuki, J. Appl. Phys. 69, 4756 (1991).ADSCrossRefGoogle Scholar
  24. 24.
    M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. Kotov, Adv. Opt. Technol. 2011, 971267 (2011).Google Scholar
  25. 25.
    T. Okuda, N. Koshizuka, K. Hayashi, et al., IEEE Trans. Magn 23, 3491 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    V. N. Berzhansky, A. N. Shaposhnikov, A. R. Prokopov, A. V. Karavainikov, T. V. Mikhailova, E. Yu. Semuk, M.  I. Sharipova, T. V. Dolgova, A. A. Fedyanin, V. A. Kotov, and V. O. Golub, Materialwiss. Werkstofftech. 42, 19 (2011).CrossRefGoogle Scholar
  27. 27.
    A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. V. Karavainikov, Y. E. Vysokikh, N. N. Gerasimenko, and D. I. Smirnov, Mater. Res. Bull. 95, 115 (2017).CrossRefGoogle Scholar
  28. 28.
    A. N. Shaposhnikov, A. R. Prokopov, A. V. Karavainikov, V. N. Berzhansky, T. V. Mikhailova, V. A. Kotov, D. E. Balabanov, I. V. Sharay, O. Y. Salyuk, M. Vasiliev, and V. O. Golub, Mater. Res. Bull. 55, 19 (2014).CrossRefGoogle Scholar
  29. 29.
    T. V. Mikhailova, V. N. Berzhansky, A. N. Shaposhnikov, A. V. Karavainikov, A. R. Prokopov, Yu. M. Kharchenko, I. M. Lukienko, O. V. Miloslavskaya, and M. F. Kharchenko, Opt. Mater. 78, 521 (2018).ADSCrossRefGoogle Scholar
  30. 30.
    T. V. Mikhailova, S. D. Lyashko, S. V. Tomilin, A. V. Karavainikov, A. R. Prokopov, A. N. Shaposhnikov, V. N. Berzhansky, J. Phys.: Conf. Ser. 917, 062053 (2017).Google Scholar
  31. 31.
    V. N. Berzhansky, A. N. Shaposhnikov, A. R. Proko-pov, A. V. Karavainikov, T. V. Mikhailova, I. N. Lukienko, Yu. N. Kharchenko, V. O. Golub, O. Yu. Salyuk, and V. I. Belotelov, J. Exp. Theor. Phys. 123, 744 (2016).ADSCrossRefGoogle Scholar
  32. 32.
    M. C. Onbasli, T. Goto, X. Sun, N. Huynh, and C. A. Ross, Opt. Express 1, 25184 (2014).Google Scholar
  33. 33.
    T. Okuda, T. Katayama, K. Satoh, and H. Yamamoto, J. Appl. Phys. 69, 4580 (1991).ADSCrossRefGoogle Scholar
  34. 34.
    H. Toraya and T. Okuda, J. Phys. Chem. Solids 56, 1317 (1995).ADSCrossRefGoogle Scholar
  35. 35.
    T. Okuda, A. Kudox, S. Yoshihara, et al., J. Phys. IV 7, C1-707 (1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. R. Prokopov
    • 1
  • T. V. Mikhailova
    • 1
    Email author
  • E. V. Danishevskaya
    • 2
  • A. N. Shaposhnikov
    • 1
  • V. N. Berzhansky
    • 1
  • A. V. Karavainikov
    • 1
  • A. S. Nedviga
    • 1
  • I. A. Nauhatsky
    • 1
  • E. T. Milyukova
    • 1
  1. 1.Vernadsky Crimean Federal UniversitySimferopolRussia
  2. 2.Crimean University of Culture, Arts, and TourismSimferopolRussia

Personalised recommendations