Advertisement

Technical Physics

, Volume 64, Issue 11, pp 1573–1578 | Cite as

Application of Planar Permalloy Microparticles for Detecting Mechanical Stresses

  • N. I. NurgazizovEmail author
  • D. A. Bizyaev
  • A. A. Bukharaev
  • I. V. Russkikh
  • Yu. V. Sadchikov
Article
  • 3 Downloads

Abstract

We report on the results of analysis of variation of the magnetic structure of planar permalloy microparticles under the action of mechanical stresses. The particles were formed on glass substrates and had a square shape in the plane of the sample. It is shown that uniaxial mechanical stresses can be detected from the images of such particles obtained using a magnetic force microscope. Depending on the geometrical sizes of particles, we have determined the ranges of stresses for detecting of which such particles can be effectively used.

Notes

FUNDING

This study was supported by the Russian Foundation for Basic Research (project no. 17-08-00915).

CONFLICT OF INTEREST

The authors claim that there are no conflicts of interest.

REFERENCES

  1. 1.
    A. I. Morosov, Phys. Solid State 56, 865 (2014).  https://doi.org/10.1134/S1063783414050199 ADSCrossRefGoogle Scholar
  2. 2.
    A. Bur, T. Wu, J. Hockel, C. Hsu, H. Kim, T. Chung, K. Wong, K. Wang, and G. Carma, J. Appl. Phys. 109, 123903 (2011).  https://doi.org/10.1063/1.3592344 ADSCrossRefGoogle Scholar
  3. 3.
    D. E. Nikonov and I. A. Young, J. Mater. Res. 29, 2109 (2014).  https://doi.org/10.1557/jmr.2014.243 ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Bukharaev, A. K. Zvezdin, A. P. Pyatakov, and Yu. K. Fetisov, Phys.-Usp. 61, 1175 (2018).  https://doi.org/10.3367/UFNe.2018.01.038279 CrossRefGoogle Scholar
  5. 5.
    S. Finizio, M. Foerster, M. Buzzi, B. Kruger, M. Jourdan, C. Vaz, J. Hockel, T. Miyawaki, A. Tkach, S. Valencia, F. Kronast, G. Carman, F. Nolting, and M. Klaui, Phys. Rev. Appl. 1, 021001 (2014).  https://doi.org/10.1103/PhysRevApplied.1.021001 ADSCrossRefGoogle Scholar
  6. 6.
    G. Dai, Q. Zhan, H. Yang, Y. Liu, X. Zhang, Z. Zuo, B. Chen, and R. Li, J. Appl. Phys. 114, 173913 (2013).  https://doi.org/10.1063/1.4829670 ADSCrossRefGoogle Scholar
  7. 7.
    B. A. Belyaev and A. V. Izotov, Phys. Solid State 49, 1731 (2007).  https://doi.org/10.1134/S106378340709020X ADSCrossRefGoogle Scholar
  8. 8.
    D. Cao, Z. Wang, and L. Pan, Appl. Phys. A 122, 938 (2016).  https://doi.org/10.1007/s00339-016-0468-y ADSCrossRefGoogle Scholar
  9. 9.
    I. Wolf, Semicond. Sci. Technol. 11, 139 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    V. Srikaret, A. Swan, M. Unlu, B. Goldberg, and S. Spearing, J. Microelectromech. Syst. 12, 779 (2003).CrossRefGoogle Scholar
  11. 11.
    A. Satohet, T. Tada, V. Poborchiial, T. Kanayama, S. Satoh, snd H. Arimoto, Jpn. J. Appl. Phys. 51, 016603 (2012).  https://doi.org/10.1143/JJAP.51.016603 ADSCrossRefGoogle Scholar
  12. 12.
    http://math.nist.gov/oommf/.Google Scholar
  13. 13.
    D. V. Ovchinnikov and A. A. Bukharaev, Tech. Phys. 46, 1014 (2001).  https://doi.org/10.1134/1.1395123 CrossRefGoogle Scholar
  14. 14.
    E. S. Borovik, V. V. Eremenko, and A. S. Mil’ner, Lectures on Magnetism (Fizmatlit, Moscow, 2005).Google Scholar
  15. 15.
    NX Nastran. Theoretical Manual (Siemens Product Lifecycle Management Software, 2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. I. Nurgazizov
    • 1
    Email author
  • D. A. Bizyaev
    • 1
  • A. A. Bukharaev
    • 1
  • I. V. Russkikh
    • 1
  • Yu. V. Sadchikov
    • 1
    • 2
  1. 1.Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of SciencesKazanRussia
  2. 2.Tupolev Kazan National Research Technical University (KAI)KazanRussia

Personalised recommendations