Technical Physics

, Volume 64, Issue 11, pp 1566–1572 | Cite as

Emission Properties of Laser Plasma Excited on Molecular-Cluster Carbon Dioxide Jets

  • A. N. NechaiEmail author
  • A. A. Perekalov
  • N. I. Chkhalo
  • N. N. Salashchenko


We report on the results of investigation of a gas-jet laser-plasma source of extreme ultraviolet radiation based on a conical supersonic nozzle. As a target, we used molecular-cluster CO2 jets. Different regimes of the gas flow were obtained by varying the gas parameters at the gas inlet and the influence of these regimes on the emission and technical characteristics of the radiation source was analyzed. It has been shown experimentally that radiation emission is intensified upon an increase in the amount of clustered material in the jet.



This study was supported by the Russian Science Foundation (project no. 17-12-01227).


The authors claim that there are no conflicts of interest.


  1. 1.
    V. Bakshi, EUV Sources for Lithography (SPIE, 2006).CrossRefGoogle Scholar
  2. 2.
    U. Saalmann, C. Siedschlag, and J. M. Rost, J. Phys. B 39, R39 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    V. P. Krainov, B. M. Smirnov, and M. B. Smirnov, Phys.-Usp. 50, 907 (2007).CrossRefGoogle Scholar
  4. 4.
    T. Taguchi, T. M. Antonsen, Jr., and H. M. Milchberg, Phys. Rev. Lett. 92, 205003 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    B. M. Smirnov, Phys.-Usp. 40, 1117 (1997).CrossRefGoogle Scholar
  6. 6.
    A. Y. Faenov, A. I. Magunov, T. A. Pikuz, I. Y. Skobelev, and F. Blasco, AIP Conf. Proc. 652, 404 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    E. Parra, I. Alexeev, J. Fan, K. Y. Kim, S. J. McNaught, and H. M. Milchberg, Phys. Rev. E 62, R5931 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    T. A. Pikuz, A. Y. Faenov, I. Y. Skobelev, S. V. Gasilov, A. S. Boldarev, V. A. Gasilov, and T. Homma, J. Phys.: Conf. Ser. 163, 012106 (2009).Google Scholar
  9. 9.
    A. Ya. Faenov, T. A. Pikuz, I. Yu. Skobelev, A. I. Magunov, V. P. Efremov, M. Servol, F. Quere, M. Bougeard, P. Monot, Ph. Martin, M. Francucci, G. Petrocelli, and P. Audebert, JETP Lett. 80, 730 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    N. I. Chkhalo, S. A. Garakhin, A. Y. Lopatin, A. N.  Nechay, A. E. Pestov, V. N. Polkovnikov, and S. Y. Zuev, AIP Adv. 8, 105003 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    V. P. Krainov and M. B. Smirnov, Phys.-Usp. 43, 901 (2000).CrossRefGoogle Scholar
  12. 12.
    O. F. Hagena, Surf. Sci. 106, 101 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    O. F. Hagena and W. Obert, J. Chem. Phys. 56, 1793 (1972).ADSCrossRefGoogle Scholar
  14. 14.
    R. A. Smith, T. Ditmire, and J. W. G. Tisch, Rev. Sci. Instrum. 69, 3798 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    O. G. Danylchenko, S. I. Kovalenko, and V. N. Samovarov, Tech. Phys. Lett. 34, 1037 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    S. Kranzusch and K. Mann, Opt. Commun. 200, 223 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    K. Bergmann, G. Schriever, O. Rosier, M. Muller, W. Neff, and R. Lebert, Appl. Opt. 38, 5413 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. N. Nechai
    • 1
    Email author
  • A. A. Perekalov
    • 1
    • 2
  • N. I. Chkhalo
    • 1
  • N. N. Salashchenko
    • 1
  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Lobachevsky State UniversityNizhny NovgorodRussia

Personalised recommendations