Advertisement

Technical Physics

, Volume 64, Issue 11, pp 1609–1614 | Cite as

Study of the Crack Resistance of Microarc Oxidation Coatings after Laser Doping with Zirconium Oxide

  • V. A. LapitskayaEmail author
  • T. A. Kuznetsova
  • S. A. Chizhik
  • A. I. Komarov
  • Yu. I. Frolov
  • A. S. Romanyuk
Article
  • 7 Downloads

Abstract

In this paper we present the results of a study of crack resistance of a microarc oxidation coating (MAO) after laser doping with zirconium oxide. Crack resistance was determined by indentation with imprint imaging using atomic force microscopy. Laser doping with zirconium oxide was established to lead to a significant hardening of the MAO coating. The stress intensity factor increases by a factor of 2.7 while surface damage decreases by a factor of 2 compared with the initial MAO coating.

Notes

FUNDING

This work was supported by the Belarusian Republican Foundation for Basic Research, project no. F18R-239.

CONFLICT OF INTEREST

The authors declare that they do not have any conflicts of interest.

REFERENCES

  1. 1.
    A. I. Komarov, P. A. Vityaz’, V. I. Komarova, N. N. Rozhkova, and P. S. Zolotaya, in Nanostructures in Condensed Media (Inst. Teplo- i Massoobmena, Minsk, 2016), p. 14.Google Scholar
  2. 2.
    A. S. Kalinichenko, A. I. Komarov, V. I. Komarova, V. V. Meshkova, D. O. Iskandarova, and Yu. I. Frolov, in Modern Methods and Technologies for Production and Processing of Materials (Fiz.-Tekh. Inst. Nats. Akad. Nauk Belarusi, Minsk, 2017), Vol. 2, p. 176.Google Scholar
  3. 3.
    P. A. Vityaz, A. I. Komarov, V. I. Komarova, and T. A. Kuznetsova, J. Frict. Wear 32, 231 (2011).  https://doi.org/10.3103/S106836661104012X CrossRefGoogle Scholar
  4. 4.
    G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).  https://doi.org/10.1111/j.1151-2916.1981.tb10320.x CrossRefGoogle Scholar
  5. 5.
    O. L. Khasanov, V. K. Struts, V. M. Sokolov, V. V. Polisadova, E. S. Dvilis, and Z. G. Bikbaeva, Methods for Measuring the Microhardness and the Crack Resistance of Nanostructured Ceramics: Study Guide (Tomsk. Politekh. Univ., Tomsk, 2011).Google Scholar
  6. 6.
    A. A. Dmitrievskii, A. O. Zhigachev, D. G. Zhigacheva, and A. I. Tyurin, Tech. Phys. 64, 86 (2019).  https://doi.org/10.1134/S1063784219010092 CrossRefGoogle Scholar
  7. 7.
    T. A. Kuznetsova, M. A. Andreev, L. V. Markova, and S. A. Chizhik, J. Frict. Wear 28, 279 (2007).CrossRefGoogle Scholar
  8. 8.
    T. A. Kuznetsova, S. A. Chizhik, and A. L. Khudoley, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8, 1275 (2014).  https://doi.org/10.7868/S020735281409011X CrossRefGoogle Scholar
  9. 9.
    V. M. Anishchik, V. V. Uglov, A. K. Kuleshov, A. R. Filipp, D. P. Rusalsky, M. V. Astashynskaya, M.  P. Samtsov, T. A. Kuznetsova, F. Thiery, and Y. Pauleau, Thin Solid Films 482, 248 (2005).  https://doi.org/10.1016/j.tsf.2004.11.153 ADSCrossRefGoogle Scholar
  10. 10.
    M. Andreyev, L. Markova, T. Kuznetsova, and V. M. Anishchik, Vacuum 78, 451 (2005).  https://doi.org/10.1016/j.vacuum.2005.01.067 ADSCrossRefGoogle Scholar
  11. 11.
    T. A. Kuznetsova, M. A. Andreev, and L. V. Markova, Mater., Tekhnol., Instrum. 11, 105 (2006).Google Scholar
  12. 12.
    T. A. Kuznetsova, M. A. Andreev, and L. V. Markova, Trenie Iznos 26, 521 (2005).Google Scholar
  13. 13.
    T. M. Ulyanova, L. V. Titova, S. V. Medichenko, Yu. G. Zonov, T. E. Konstantinova, V. A. Glazunova, A. S. Doroshkevich, and T. A. Kuznetsova, Crystallogr. Rep. 51, S144 (2006).  https://doi.org/10.1134/S1063774506070212 ADSCrossRefGoogle Scholar
  14. 14.
    T. A. Kuznetsova, V. A. Lapitskaya, S. A. Chizhik, B. Warcholinski, A. Gilewicz, and A. S. Kuprin, IOP Conf. Ser.: Mater. Sci. Eng. 443, 012017 (2018).  https://doi.org/10.1088/1757-899X/443/1/012017 CrossRefGoogle Scholar
  15. 15.
    T. A. Kuznetsova, V. A. Lapitskaya, S. A. Chizhik, V. V. Uglov, V. I. Shymanski, and N. T. Kvasov, IOP Conf. Ser.: Mater. Sci. Eng. 443, 012018 (2018).  https://doi.org/10.1088/1757-899X/443/1/012018 CrossRefGoogle Scholar
  16. 16.
    T. A. Kuznetsova, M. A. Andreev, L. V. Markova, and V. A. Chekan, J. Frict. Wear 22, 423 (2001).Google Scholar
  17. 17.
    V. A. Lapitskaya, T. A. Kuznetsova, S. A. Chizhik, and P. S. Grinchuk, Proc. XIII Int. Conf. “Methodological Aspects of Scanning Probe Microscopy,” Minsk, Belarus, 2018, p. 260.Google Scholar
  18. 18.
    A. I. Komarov, Yu. I. Frolov, O. G. Devoino, and V. V. Meshkova, Aktual. Vopr. Mashinoved., No. 7, 207 (2018).Google Scholar
  19. 19.
    A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, J. Adv. Ceram. 2, 87 (2013).  https://doi.org/10.1007/s40145-013-0047-z CrossRefGoogle Scholar
  20. 20.
    K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 13 (1982).CrossRefGoogle Scholar
  21. 21.
    G. A. Gogotsi and A. V. Bashta, Strength Mater. 22, 1306 (1990).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Lapitskaya
    • 1
    Email author
  • T. A. Kuznetsova
    • 1
  • S. A. Chizhik
    • 1
  • A. I. Komarov
    • 2
  • Yu. I. Frolov
    • 3
  • A. S. Romanyuk
    • 2
  1. 1.Luikov Heat and Mass Transfer Institute, National Academy of Sciences of BelarusMinskBelarus
  2. 2.Joint Institute of Mechanical Engineering, National Academy of Sciences of BelarusMinskBelarus
  3. 3.Belarusian National Technical UniversityMinskBelarus

Personalised recommendations