Advertisement

Technical Physics

, Volume 64, Issue 11, pp 1549–1555 | Cite as

Oscillatory Regimes in a 1D Josephson Junction Array with a Nonlocal Delayed Coupling

  • M. A. GalinEmail author
  • V. V. Kurin
Article
  • 35 Downloads

Abstract

We have numerically investigated a series array of electromagnetically coupled Josephson junctions considering the coupling delay. In the general case of a nonzero delay, we have derived equations for the slow and fast phases in the low-frequency approximation. We have studied the regimes of oscillations of a Josephson junction array for different positions of the bias point on the current–voltage characteristics (including its reverse branch). Similar analysis has been performed for systems of equations without coupling delay and for an arbitrary bias current. Several regimes of steady-state oscillations have been detected, i.e. synchronous oscillations, traveling wave regime, regime of partial switching-off of junctions, and chimera states.

Notes

FUNDING

This study was supported by the Russian Foundation for Basic Research (project no. 18-02-00912) and by the program of the Presidium of the Russian Academy of Sciences no. I.1 “Nonlinear Dynamics: Fundamental Problems and Applications”, project “Nonlinear Dynamics of Superconducting and Semiconducting Superlattices”.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    B. Jeanneret and S. P. Benz, Eur. Phys. J. Spec. Top. 172, 181 (2009).CrossRefGoogle Scholar
  2. 2.
    T. Kashiwagi, T. Yamamoto, T. Kitamura, K. Asanuma, C. Watanabe, K. Nakade, T. Yasui, Y. Saiwai, Y. Shibano, H. Kubo, et al., Appl. Phys. Lett. 106, 092601 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    N. V. Kinev, K. I. Rudakov, A. M. Baryshev, and V. P. Koshelets, J. Phys.: Conf. Ser. 1124, 071001 (2018).Google Scholar
  4. 4.
    M. A. Galin, E. A. Borodianskyi, V. V. Kurin, I. A. Shereshevsky, N. K. Vdovicheva, V. M. Krasnov, and A. M. Klushin, Phys. Rev. Appl. 9, 054032 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, and C. Neill, Phys. Rev. Lett. 111, 080502 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    Q. Liu, H. Wang, Q. Zhang, H. Wang, W. Peng, and Zh. Wang, Appl. Phys. Lett. 110, 222604 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, Appl. Phys. Lett. 102, 062601 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    M. R. Kolahchi, A. E. Botha, and Yu. M. Shukrinov, J. Supercond. Novel Magn. 30, 1659 (2017).CrossRefGoogle Scholar
  9. 9.
    K. K. Likharev, Introduction to the Dynamics of Josephson Junctions (Nauka, Moscow, 1985).Google Scholar
  10. 10.
    Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002).Google Scholar
  11. 11.
    A. Mishra, S. Saha, P. K. Roy, T. Kapitaniak, and S. K. Dana, Chaos 27, 023110 (2017).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    V. V. Kurin, N. K. Vdovicheva, and I. A. Shereshevskii, Radiophys. Quantum Electron. 59, 922 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    H. Sakaguchi and Y. Kuramoto, Prog. Theor. Phys. 76, 576 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    K. Wiesenfeld, P. Colet, and S. H. Strogatz, Phys. Rev. Lett. 76, 404 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    F. P. Kemeth, S. W. Haugland, L. Schmidt, I. G. Kevrekidis, and K. Krischer, Chaos 26, 094815 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    L. Larger, B. Penkovsky, and Yu. Maistrenko, Phys. Rev. Lett. 111, 054103 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Lobachevsky State UniversityNizhny NovgorodRussia

Personalised recommendations