Advertisement

Technical Physics

, Volume 64, Issue 11, pp 1596–1601 | Cite as

Beryllium as a Material for Thermally Stable X-Ray Mirrors

  • N. I. ChkhaloEmail author
  • M. V. Zorina
  • I. V. Malyshev
  • A. E. Pestov
  • V. N. Polkovnikov
  • N. N. Salashchenko
  • D. S. Kazakov
  • A. V. Mil’kov
  • I. L. Strulya
Article
  • 9 Downloads

Abstract

Thermophysical and mechanical characteristics of beryllium are compared with the corresponding characteristics of promising materials that are used for fabrication of precision mirrors working under high-intensity electromagnetic irradiation. Advantages and prospects for application of beryllium in the third- and fourth-generation synchrotrons are discussed. An original method for fabrication of ultrasmooth surfaces of beryllium substrates is presented, and limiting roughnesses are reported. Reflectances at a wavelength of 13.5 nm are determined for a multilayer Mo/Si mirror deposited on the beryllium substrate. Prospects for improving quality of polishing of beryllium substrates are discussed.

Notes

FUNDING

This work was supported by State Contract no. 0035-2014-0204 and the Russian Foundation for Basic Research (project nos. 19-02-00081, 18-02-00588, 18-02-00173, 18-07-00633, 18-32-00149 mol_a, and 17-02-00640).

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

  1. 1.
    A. Erko, M. Idir, Th. Krist, and A. G. Michette, Modern Developments in X-Ray and Neutron Optics (Springer, 2008).CrossRefGoogle Scholar
  2. 2.
    D. H. Bilderback, A. K. Freund, G. S. Knapp, and D. M. Mills, J. Synchrotron Radiat. 8, 22 (2001).CrossRefGoogle Scholar
  3. 3.
    L. Zhang, R. Barrett, K. Friedrich, P. Glatzel, T. Mairs, P. Marion, G. Monaco, C. Morawe, and T. Weng, J. Phys.: Conf. Ser. 425, 052029 (2013).  https://doi.org/10.1088/1742-6596/425/5/052029 CrossRefGoogle Scholar
  4. 4.
    P. Z. Takacs, Synchrotron Radiat. News 2 (26), 24 (1989).CrossRefGoogle Scholar
  5. 5.
    N. I. Chkhalo, M. V. Fedorchenko, N. V. Kovalenko, E. P. Kruglyakov, A. I. Volokhov, V. A. Chernov, and S. V. Mytnichenko, Nucl. Instrum. Methods Phys. Res., Sect. A 359, 121 (1995).Google Scholar
  6. 6.
    G. Admans, P. Berkvens, A. Kaprolat, and J.-L. Revol, ESRF Upgrade Programme Phase II (2015–2022). Technical Design Study (ESRF, 2014). http://www.esrf.eu/Apache_files/Upgrade/ESRForange-book.pdf.Google Scholar
  7. 7.
    Physical Quantities. Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991).Google Scholar
  8. 8.
    W. P. Barnes, Jr., Appl. Opt. 5, 1883 (1966).ADSCrossRefGoogle Scholar
  9. 9.
    J. L. Fanson, G. G. Fazio, J. R. Houck, T. Kelly, G. H. Rieke, D. J. Tenerelli, and M. Whitten, Proc. SPIE 3356, 478 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    D. A. Gildner and J. M. Marder, Proc. SPIE 1485 (1991).  https://doi.org/10.1117/12.46522
  11. 11.
    V. S. Sizenev, I. L. Strulya, A. V. Grigorevskii, V. M. Prosvirikov, V. Ya. Mendeleev, and S. N. Skovorod’ko, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved. 95 (1), 21 (2010).Google Scholar
  12. 12.
    D. Hashiguchi, J. Marder, and R. Paquin, Adv. Mater. Processes 173 (8), 20 (2015).Google Scholar
  13. 13.
    S. T. Gulati and M. J. Edwards, Proc. SPIE 10289, 1028909 (1997).  https://doi.org/10.1117/12.284710 CrossRefGoogle Scholar
  14. 14.
    R. Barrett, Proc. 2nd EIROforum School on Instrumentation, Grenoble, France,2011. http://www.epn-campus.eu/fileadmin/_migrated/content_uploads/16. BARRETT_XRayOptics.pdf.Google Scholar
  15. 15.
    M. Weiser, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 1390 (2009).Google Scholar
  16. 16.
    N. I. Chkhalo, E. B. Kluenkov, A. E. Pestov, V. N. Polkovnikov, D. G. Raskin, N. N. Salashchenko, L. A. Suslov, and M. N. Toropov, Nucl. Instrum. Methods Phys. Res., Sect. A 603, 62 (2009).Google Scholar
  17. 17.
    T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, and A. Schindler, Nucl. Instrum. Methods Phys. Res., Sect. A 616, 147 (2010).Google Scholar
  18. 18.
    J. C. Campbell, Proc. SPIE 97, 0065 (1976).Google Scholar
  19. 19.
    M. M. Miroshnikov, S. V. Lyubarskii, and Yu. P. Khimich, Opt.-Mekh. Prom-st., No. 9, 3 (1990).Google Scholar
  20. 20.
    M. M. Barysheva, Yu. A. Vainer, B. A. Gribkov, M.   V.   Zorina, A. E. Pestov, D. N. Rogachev, N. N. Salashenko, and N. I. Chkhalo, Bull. Russ. Acad. Sci.: Phys. 75, 67 (2011).CrossRefGoogle Scholar
  21. 21.
    N. I. Chkhalo, I. A. Kaskov, I. V. Malyshev, M. S. Mikhaylenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, M. N. Toropov, and I. G. Zabrodin, Precis. Eng. 48, 338 (2017).CrossRefGoogle Scholar
  22. 22.
    N. I. Chkhalo, M. S. Mikhailenko, A. V. Mil’kov, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, I. L. Strulya, M. V. Zorina, and S. Yu. Zuev, Surf. Coatings Technol. 311, 351 (2017).CrossRefGoogle Scholar
  23. 23.
    N. I. Chkhalo, S. A. Churin, M. S. Mikhaylenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and M. V. Zorina, Appl. Opt. 55, 1249 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    N. I. Chkhalo, I. V. Malyshev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, M. N. Toropov, and A. A. Soloviev, Appl. Opt. 55, 619 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    http://seso.com/wp-content/themes/theme44938 /images/PDF/Brochure/optimise/BROCHURE% 20-%20X-RAY.pdf.Google Scholar
  26. 26.
    N. I. Chkhalo, S. A. Churin, A. E. Pestov, N. N. Salashchenko, Yu. A. Vainer, and M. V. Zorina, Opt. Express 22, 20094 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. I. Chkhalo
    • 1
    Email author
  • M. V. Zorina
    • 1
  • I. V. Malyshev
    • 1
  • A. E. Pestov
    • 1
  • V. N. Polkovnikov
    • 1
  • N. N. Salashchenko
    • 1
  • D. S. Kazakov
    • 2
  • A. V. Mil’kov
    • 2
  • I. L. Strulya
    • 2
  1. 1.Institute for Physics of Microstructures, Russian Academy of Sciences Nizhny NovgorodRussia
  2. 2.OAO KompozitKorolevRussia

Personalised recommendations