Advertisement

Technical Physics

, Volume 64, Issue 11, pp 1560–1565 | Cite as

Simulation of Local Error Correction of the Surface Shape by a Low-Dimensional Ion Beam

  • A. K. Chernyshev
  • I. V. Malyshev
  • A. E. PestovEmail author
  • N. I. Chkhalo
Article
  • 7 Downloads

Abstract

We propose an algorithm for solving the problem of local error correction of the surface shape by a low-dimensional ion beam. The algorithm presumes successive sampling running over protrusions relative to the average height aimed at searching for the optimal etching point satisfying the criterion for the reduction of the sum of derivative moduli on the etching spot. It is shown that the new approach makes it possible to considerably extend the range of spatial frequencies accessible to the action for a given dimension of an ion beam.

Notes

FUNDING

This study was supported by the Russian Foundation for Basic Research (project nos. 18-32-00149mol_a and 18-07-00633) and program no. 0035-2018-0018 of the Russian Academy of Sciences.

CONFLICT OF INTEREST

The authors claim that there are no conflicts of interest.

REFERENCES

  1. 1.
    I. V. Malyshev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, M. N. Toropov, and N. I. Chkhalo, Poverkhnost, No. 1, 1 (2019).Google Scholar
  2. 2.
    M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 1999), p. 528.CrossRefGoogle Scholar
  3. 3.
    T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, and A. Schindler, Nucl. Instrum. Methods Phys. Res., Sect. A 616, 147 (2010).Google Scholar
  4. 4.
    C. Jiao, S. Li, X. Xie, S. Chen, D. Wu, and N. Kang, Appl. Opt. 49, 578 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    N. I. Chkhalo, I. A. Kaskov, I. V. Malyshev, M. S. Mikhaylenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, M. N. Toropov, and I. G. Zabrodin, Precis. Eng. 48, 338 (2017).CrossRefGoogle Scholar
  6. 6.
    A. Schindler, Proc. Optical Fabrication & Testing OSA Topical Meeting, Monterey, United States,2012, p. OW4D.1.Google Scholar
  7. 7.
    O. Schmelzer and R. Feldkamp, Proc. SPIE 9633, 96330E (2015).ADSGoogle Scholar
  8. 8.
    W. Liao, Y. Dai, X. Xie, and L. Zhou, Appl. Opt. 53, 4266 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    W. Liao, Y. Dai, X. Xie, and L. Zhou, Appl. Opt. 53, 4275 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    N. I. Chkhalo, I. V. Malyshev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, M. N. Toropov, and A. A. Soloviev, Appl. Opt. 55, 619 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Razborov, in Mathematical Education (Mosk. Tsentr Nepreryvnogo Mat. Obraz., Moscow, 1999), Vol. 3, p. 127.Google Scholar
  12. 12.
    http://www.opteg.com.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. K. Chernyshev
    • 1
    • 2
  • I. V. Malyshev
    • 1
  • A. E. Pestov
    • 1
    Email author
  • N. I. Chkhalo
    • 1
  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Lobachevsky State UniversityNizhny NovgorodRussia

Personalised recommendations