Technical Physics

, Volume 64, Issue 11, pp 1652–1656 | Cite as

Magnetization Distribution in Particles with Configuration Anisotropy, Prepared via Microsphere Lithography

  • D. A. BizyaevEmail author
  • A. A. Bukharaev
  • N. I. Nurgazizov
  • A. P. Chuklanov
  • V. M. Masalov


The arrays of permalloy particles with shape anisotropy, prepared via microsphere lithography, have been characterized using atomic force microscopy and magnetic force microscopy. The size effect from spherical particles used as the lithographic mask on the magnetization distribution in the produced particles has been investigated. The magnetic force images of particles have been simulated in order to obtain quantitative values. A comparison of shape reproducibility of particles prepared using microsphere lithography and scanning probe lithography is performed as well.



This work was supported by the Federal Kazan Research Center and the Institute of Solid State Physics, Russian Academy of Sciences within the framework of state tasks. MFM measurements were made with financial support from the Russian Foundation for Basic Research (project no. 18-02-00204).


The authors declare that they do not have any conflicts of interest.


  1. 1.
    M. Salehi-Fashami and N. D’Souza, J. Magn. Magn. Mater. 438, 76 (2017). ADSCrossRefGoogle Scholar
  2. 2.
    K. Nanayakkara, I. S. Vasil’evskii, I. S. Eremin, O. S. Kolentsova, N. I. Kargin, A. Anferov, and A. Kozhanov, J. Appl. Phys. 119, 233906 (2016). ADSCrossRefGoogle Scholar
  3. 3.
    B. Lambson, Z. Gu, M. Monroe, S. Dhuey, A. Scholl, and J. Bokor, Appl. Phys. A 111, 413 (2013). ADSCrossRefGoogle Scholar
  4. 4.
    D. Koltsov and M. Welland, J. Appl. Phys. 94, 3457 (2003). ADSCrossRefGoogle Scholar
  5. 5.
    J. Atulasimha and S. Bandyopadhyay, Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing (Wiley, Chichester, 2016).CrossRefGoogle Scholar
  6. 6.
    A. A. Bukharaev, A. K. Zvezdin, A. P. Pyatakov, and Yu. K. Fetisov, Phys.-Usp. 61, 1175 (2018). CrossRefGoogle Scholar
  7. 7.
    D. A. Bizyaev, A. A. Bukharaev, A. P. Chuklanov, and N. I. Nurgazizov, Phys. Solid State 60, 2194 (2018). ADSCrossRefGoogle Scholar
  8. 8.
    D. A. Bizyaev, A. A. Bukharaev, S. A. Ziganshina, N. I. Nurgazizov, T. F. Khanipov, and A. P. Chuklanov, Russ. Microelectron. 44, 389 (2015). CrossRefGoogle Scholar
  9. 9.
    H. Zhong, G. Tarrach, P. Wu, A. Drechsler, D. Wei, and J. Yuan, Nanotechnology 19, 095703 (2008). ADSCrossRefGoogle Scholar
  10. 10.
    Z. Zhang, C. Geng, Zh. Hao, T. Wei, and Q. Yan, Adv. Colloid Interface Sci. 228, 105 (2016). CrossRefGoogle Scholar
  11. 11. Scholar
  12. 12.
    D. V. Ovchinnikov and A. A. Bukharaev, Tech. Phys. 46, 1014 (2001). CrossRefGoogle Scholar
  13. 13.
    I. K. Kikoin, Tables of Physical Quantities. Handbook (Atomizdat, Moscow, 1976).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. A. Bizyaev
    • 1
    Email author
  • A. A. Bukharaev
    • 1
  • N. I. Nurgazizov
    • 1
  • A. P. Chuklanov
    • 1
  • V. M. Masalov
    • 2
  1. 1.Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of SciencesKazanRussia
  2. 2.Institute of Solid State Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations