Advertisement

Technical Physics

, Volume 64, Issue 8, pp 1102–1108 | Cite as

Generation of Lithium Clusters in Helium Plasma Flow

  • A. V. PopovEmail author
  • V. A. Popov
ATOMIC AND MOLECULAR PHYSICS
  • 38 Downloads

Abstract

The formation of lithium clusters in a helium flow is considered within the method considering the widths of energy levels. It is shown that lithium atoms in a plasma flow of inert helium form a cluster consisting of lithium only. In addition to lithium clusters with interatomic distances corresponding to interatomic distances of the equilibrium state, long-lived excitations of clusters with interatomic distances of 13 Bohr radii are observed. However, if excitations are removed, such systems transfer into the ground state or decay. In addition, it is observed that Li–He systems are long-lived under conditions of external excitations but quickly lose helium when these excitations are removed.

Notes

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    A. Rosenman, E. Markevich, G. Salitra, D. Aurbach, A. Garsuch, and F. F. Chesneau, Adv. Energy Mater 5, 1500212 (2015).  https://doi.org/10.1002/aenm.201500212 CrossRefGoogle Scholar
  2. 2.
    C. J. Hart, M. Cuisinier, X. Liang, D. Kundu, A. Garsuch, and L. F. Nazar, Chem. Commun. 51, 2308 (2015).  https://doi.org/10.1039/C4CC08980D CrossRefGoogle Scholar
  3. 3.
    E. Markevich, G. Salitra, A. Rosenman, Y. Talyosef, F. Chesneau, and D. Aurbach, Electrochem. Commun. 60, 42 (2015).  https://doi.org/10.1016/j.elecom.2015.08.004 CrossRefGoogle Scholar
  4. 4.
    D. Sharon, D. Hirsberg, M. Afri, A. Garsuch, A. A. Frimer, and D. Aurbach, J. Phys. Chem. C 118, 15207 (2014).  https://doi.org/10.1021/jp506230v CrossRefGoogle Scholar
  5. 5.
    L. Cristofolini, M. Riccò, and R. De Renzi, Phys. Rev. B 59, 8343 (1999).  https://doi.org/10.1103/PhysRevB.59.8343 ADSCrossRefGoogle Scholar
  6. 6.
    J. Kohanoff, W. Andreoni, and M. Parrinello, Chem. Phys. Lett. 198, 472 (1992).  https://doi.org/10.1016/0009-2614(92)80030-F ADSCrossRefGoogle Scholar
  7. 7.
    A. K. Kushwaha, M. R. Sahoo, J. Nanda, and S. K. Nayak, J. Cluster Sci. 28, 2779 (2017).  https://doi.org/10.1007/s10876-017-1260-7 CrossRefGoogle Scholar
  8. 8.
    D. P. Woodruff, Atomic Clusters: From Gas Phase to Deposited (Elsevier, 2007).Google Scholar
  9. 9.
    A. Mathew and T. Pradeep, Part. Part. Syst. Charact. 31, 1017 (2014).  https://doi.org/10.1002/ppsc.201400033 CrossRefGoogle Scholar
  10. 10.
    W. A. de Heer, Rev. Mod. Phys. 65, 611 (1993).  https://doi.org/10.1103/RevModPhys.65.611 ADSCrossRefGoogle Scholar
  11. 11.
    Y. Lu and W. Chen, Chem. Soc. Rev. 41, 3594 (2012).  https://doi.org/10.1039/c2cs15325d CrossRefGoogle Scholar
  12. 12.
    B. M. Smirnov, Phys.-Usp. 46, 589 (2003).CrossRefGoogle Scholar
  13. 13.
    J. W. Lou and G. A. Cranch, AIP Adv. 8, 025305 (2018).  https://doi.org/10.1063/1.5010294 ADSCrossRefGoogle Scholar
  14. 14.
    C. Bleiholder, N. R. Johnson, S. Contreras, T. Wyttenbach, and M. T. Bowers, Anal. Chem. 87, 7196 (2015).  https://doi.org/10.1021/acs.analchem.5b01429 CrossRefGoogle Scholar
  15. 15.
    V. M. Apatin, V. N. Lokhman, G. N. Makarov, D. D. Ogurok, and E. A. Ryabov, J. Exp. Theor. Phys. 125, 531 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    V. A. Popov, P. Yu. Gulyaev, and B. V. Semkin, Polzunov. Vestn. 2-1, 21 (2012).Google Scholar
  17. 17.
    J. Hubbard and R. E. Peierls, Proc. R. Soc. London A 240, 539 (1957).  https://doi.org/10.1098/rspa.1957.0106 ADSCrossRefGoogle Scholar
  18. 18.
    P. M. Echenique, J. M. Pitarke, E. V. Chulkov, and A. Rubio, Chem. Phys. 251, 1 (2000).  https://doi.org/10.1016/S0301-0104(99)00313-4 CrossRefGoogle Scholar
  19. 19.
    J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).  https://doi.org/10.1103/PhysRev.112.812 ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
  21. 21.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theory Methods in Statistical Physics (Dobrosvet, KDU, 2014).Google Scholar
  22. 22.
    G. D. Mahan, Many-Particle Physics (Springer, 2000).CrossRefGoogle Scholar
  23. 23.
    F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).  https://doi.org/10.1088/0034-4885/61/3/002 ADSCrossRefGoogle Scholar
  24. 24.
    W. G. Aulbur, L. Jonsson, and J. W. Wilkins, Quasiparticle Calculations in Solids (Academic, San Diego, 2000).CrossRefGoogle Scholar
  25. 25.
    A. M. Sarry and M. F. Sarry, Phys. Solid State 54, 1315 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    A. N. Ipatov, J. Exp. Theor. Phys. 110, 199 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    H. Lischka, D. Nachtigallová A. J. A. Aquino, P. G. Szalay, F. Plasser, F. B. C. Machado, et al., Chem. Rev. 118, 7293 (2018).  https://doi.org/10.1021/acs.chemrev.8b00244 CrossRefGoogle Scholar
  28. 28.
    C. F. Fischer, M. Godefroid, T. Brage, P. Jönsson, and G. Gaigalas, J. Phys. B 49, 182004 (2016).  https://doi.org/10.1088/0953-4075/49/18/182004 ADSCrossRefGoogle Scholar
  29. 29.
    A. V. Popov, Izv. Altai. Gos. Univ., No. 1, 154 (2012).Google Scholar
  30. 30.
  31. 31.
  32. 32.
    A. V. Popov, Comput. Mater. Sci. 36, 217 (2006).  https://doi.org/10.1016/j.commatsci.2005.06.005 CrossRefGoogle Scholar
  33. 33.
  34. 34.
  35. 35.
    A. V. Popov, Math. Modell. Geom. 3, 29 (2015).Google Scholar
  36. 36.
  37. 37.
    S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).  https://doi.org/10.1063/1.1696113 ADSCrossRefGoogle Scholar
  38. 38.
  39. 39.
    N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge Univ. Press, 2011).CrossRefzbMATHGoogle Scholar
  40. 40.
    J. Li, N. D. Drummond, P. Schuck, and V. Olevano, arXiv:1801.09977 [physics.atom-ph].Google Scholar
  41. 41.
    E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).  https://doi.org/10.1016/S0092-640X(74)80016-1 ADSCrossRefGoogle Scholar
  42. 42.
    B. G. A. Brito,  L. Cândido,  J. N. T. Rabelo,  and G.-Q. Hai, Chem. Phys. Lett. 616–617, 212 (2014).  https://doi.org/10.1016/J.CPLETT.2014.10.044
  43. 43.
    S. P. de Visser, Y. Alpert, D. Danovich, and S. Shaik, J. Phys. Chem. A 104, 11223 (2000).  https://doi.org/10.1021/JP002723A CrossRefGoogle Scholar
  44. 44.
    T. B. Tai, P. V. Nhat, M. T. Nguyen, S. Li, and D. A. Dixon, J. Phys. Chem. A 115, 7673 (2011).  https://doi.org/10.1021/jp200992u CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Polzunov Altai State Technical UniversityBarnaulRussia

Personalised recommendations