Technical Physics

, Volume 64, Issue 8, pp 1168–1177 | Cite as

Features of the Formation and Structure of Barium Titanate Langmuir Films

  • A. P. Kuzmenko
  • I. V. Chukhaeva
  • P. V. AbakumovEmail author


Ferroelectric films of stabilized barium titanate nanoparticles have been obtained from the colloidal system of a sodium oleate aqueous solution by the Langmuir–Blodgett method at the KSV NIMA 2002 facility, coagulants with the most characteristic hydrodynamic diameter of ∼200 nm have been found, and a physical model of their formation from barium titanate nanoparticles in this colloid system has been proposed. Homogeneous ferroelectric films with barium titanate particles ∼20 nm in size and a band gap of 3.6 eV have been deposited. The topological and structural features and distribution of chemical elements in the obtained films on different substrates have been studied by the methods of scanning probe and electron microscopy, vibrational and X-ray photoelectron spectroscopy, as well as X-ray diffractometry.



The studies were carried out with the support of the Ministry of Education and Science of the Russian Federation in the framework of state assignment no. 16.2814.2017/PCh.


The authors state that they have no conflict of interest.


  1. 1.
    S. A. Paniagua, Y. Kim, and K. Henry, Appl. Mater. Interfaces 6, 3477 (2014).CrossRefGoogle Scholar
  2. 2.
    M. W. Cole, C. V. Weiss, E. Ngo, S. Hirsch, and L. A. Coryell, Appl. Phys. Lett. 92, 182906 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    R. K. Jain, A. Dubey, A. Soni, S. K. Gupta, and T. C. Shami, Process. Appl. Ceram. 7, 189 (2013).CrossRefGoogle Scholar
  4. 4.
    B. L. Cheng, M. Gabbay, M. Maglione, and G. Fantozzi, J. Electroceram. 10, 5 (2003).CrossRefGoogle Scholar
  5. 5.
    T. Tohma, H. Masumoto, and T. Goto, Mater. Trans. 43, 2880 (2002).CrossRefGoogle Scholar
  6. 6.
    V. R. Chinchamalatpure, S. A. Ghosh, and G. N. Chaudhari, Mater. Sci. Appl. 1, 187 (2010).Google Scholar
  7. 7.
    L. Stoica, F. Bygrave, and A. J. Bell, U.P.B. Sci. Bull. Ser. A 75, 147 (2013).Google Scholar
  8. 8.
    S. S. Kumbhar, M. A. Mahadik, P. K. Chougule, V. S. Mohite, Y. M. Hunge, K. Y. Rajpure, A. V. Moholkar, and C. H. Bhosale, Mater. Sci. Pol. 33, 852 (2015).CrossRefGoogle Scholar
  9. 9.
    J. P. George, J. Beeckman, W. Woestenborghs, P. F. Smet, W. Bogaerts, and K. Neyts, Nanoscale Res. Lett. 62, 1 (2013).Google Scholar
  10. 10.
    G. Pfaff and A. Feltz, Cryst. Res. Technol. 25, 1039 (1990).CrossRefGoogle Scholar
  11. 11.
    A. Kuzmenko, A. Sizov, O. Yacovlev, and N. Emelianov, J. Nano- Electron. Phys. 5, 04024 (2013).Google Scholar
  12. 12.
    N. A. Emelianov, Eur. Phys. J. Appl. Phys. 69, 10401 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    A. P. Kuzmenko, I. V. Chuhaeva, P. V. Abakumov, M. B. Dobromyslov, and N. A. Emelyanov, J. Nano- Electron. Phys. 7, 04025 (2015).Google Scholar
  14. 14.
    R. Serra-Gómez, C. A. Dreiss, J. González-Benito, and G. González-Gaitano, Langmuir 32, 6398 (2016).CrossRefGoogle Scholar
  15. 15.
    S. Yoon, S. Baik, M. G. Kim, N. Shin, and I. Kim, J. Korean Ceram. Soc. 43, 710 (2006).CrossRefGoogle Scholar
  16. 16.
    W. Wang, B. Gu, and L. Liang, J. Dispersion Sci. Technol. 25, 593 (2004).Google Scholar
  17. 17.
    B. V. Derjaguin, Theory of Stability of Colloids and Thin Films (Springer, 1989).Google Scholar
  18. 18.
    M. A. Pugachevskii and N. F. Karpovich, J. Appl. Spectrosc. 82, 673 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    A. Detrich, A. Deak, E. Hild, A. L. Kovacs, and Z. Horvolgyi, Langmuir 26, 2694 (2010).CrossRefGoogle Scholar
  20. 20.
    H. Hayashi, T. Nakamura, and T. Ebina, J. Phys. Chem. Solids 74, 957 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    Z. Lazarevic, N. Romčevic, M. Vijatović, N. Paunovic, M. Romcevic, B. Stojanovic, and Z. Dohcevic-Mitrovic, Acta Phys. Pol. A 115, 808 (2009).CrossRefGoogle Scholar
  22. 22.
    S.-J. Chang, W.-S. Liao, C.-J. Ciou, J.-T. Lee, and C.-C. Li, J. Colloid Interface Sci. 329, 300 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    Q. A. Mohammed, Z. R. Ali, and A. F. Mijbas, J. Babylon Univ. (Eng. Sci.) 20, 12 (2012).Google Scholar
  24. 24.
    M. Minnekaev, K. Bulakh, A. Chouprik, W. Drube, P. Ershov, Yu. Lebedinskii, K. Maksimova, and K. Zenkevich, Microelectron. Eng. 109, 227 (2013).CrossRefGoogle Scholar
  25. 25.
    P. Ferreira, R. Z. Hou, A. Wu, M.-G. Willinger, P. M. Vilarinho, J. Mosa, C. Laberty-Robert, C. Boissiere, D. Grosso, and C. Sanchez, Langmuir 28, 2944 (2012).CrossRefGoogle Scholar
  26. 26.
    A. P. Kuzmenko, I. V. Chuhaeva, P. V. Abakumov, and M. B. Dobromyslov, J. Nano- Electron. Phys. 8, 04043 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. P. Kuzmenko
    • 1
  • I. V. Chukhaeva
    • 1
  • P. V. Abakumov
    • 1
    Email author
  1. 1.Southwest State UniversityKurskRussia

Personalised recommendations