Advertisement

Technical Physics

, Volume 64, Issue 8, pp 1109–1115 | Cite as

Instability Increments for Waves with Different Symmetries on a Space-Charged Jet Moving Relative to a Material Medium

  • A. I. Grigor’ev
  • S. O. ShiryaevaEmail author
  • G. E. Mikheev
GASES AND LIQUIDS
  • 19 Downloads

Abstract

We have studied the instability increments of capillary waves with an arbitrary symmetry (arbitrary azimuthal numbers m) on the surface of a space-charged cylindrical jet of an ideal incompressible dielectric liquid moving relative to an ideal incompressible material dielectric medium. It is shown that for not very high jet velocities, the axisymmetric mode (m = 0) is the first to become unstable upon an increase in the space charge density, and then the kink mode (m = 1) and flexural-strain mode (m = 2) exhibit instability. It is this sequence of realization of instability of azimuthal modes that determines the regularities of charged jet dispersion in experiments. For jet velocities comparable with those critical for aerodynamic instability realization, the mode with m = 1 is the first to lose its stability. The dependences of maximal increments on wavenumbers have been determined for all azimuthal modes.

Notes

CONCLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

  1. 1.
    W. A. Macky, Proc. R. Soc. A 133, 565 (1931).ADSCrossRefGoogle Scholar
  2. 2.
    M. Cloupeau and B. Prunet Foch, J. Aerosol Sci. 25, 1021 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    A. Jaworek and A. Krupa, J. Aerosol Sci. 30, 873 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    O. V. Kim and P. F. Dunn, Langmuir 26, 15807 (2010).CrossRefGoogle Scholar
  5. 5.
    V. M. Entov and A. L. Yarin, Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza 17, 112 (1984).Google Scholar
  6. 6.
    J. Eggers and E. Willermaux, Rep. Prog. Phys. 71, 036601 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    A. I. Zhakin, Phys.-Usp. 56, 141 (2013).CrossRefGoogle Scholar
  8. 8.
    S. O. Shiryaeva and A. I. Grigor’ev, Surf. Eng. Appl. Electrochem. 50, 395 (2014).CrossRefGoogle Scholar
  9. 9.
    J. B. Fenn, M. Mann, et al., Science 246, 64 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    A. Huebner and H. Chu, J. Fluid Mech. 49, 361 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    G. Taylor, Proc. R. Soc. A 313, 453 (1969).ADSCrossRefGoogle Scholar
  12. 12.
    D. Saville, Phys. Fluids 14, 1095 (1971).ADSCrossRefGoogle Scholar
  13. 13.
    S. O. Shiryaeva, Tech. Phys. 55, 457 (2010).CrossRefGoogle Scholar
  14. 14.
    A. I. Grigor’ev, Tech. Phys. 54, 482 (2009).CrossRefGoogle Scholar
  15. 15.
    S. O. Shiryaeva, Tech. Phys. 56, 782 (2011).CrossRefGoogle Scholar
  16. 16.
    L. Tonks, Phys. Rev. 48, 562 (1935).ADSCrossRefGoogle Scholar
  17. 17.
    C. T. Wilson and G. I. Taylor, Proc. Cambridge Philos. Soc. 22, 728 (1925).ADSCrossRefGoogle Scholar
  18. 18.
    N. M. Zubarev, JETP Lett. 73, 544 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    Ya. I. Frenkel’, Zh. Eksp. Teor. Fiz. 6, 348 (1936).Google Scholar
  20. 20.
    G. A. Ostroumov, Interaction of Electric and Hydrodynamic Fields (Nauka, Moscow, 1979).Google Scholar
  21. 21.
    V. G. Levich, Physicochemical Hydrodynamics (Fizmatgiz, Moscow, 1959).Google Scholar
  22. 22.
    J. W. Strutt (Lord Rayleigh), Proc. R. Soc. London 290, 71 (1879).Google Scholar
  23. 23.
    S. O. Shiryaeva, A. I. Grigor’ev, and G. E. Mikheev, Tech. Phys. 62, 1163 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. I. Grigor’ev
    • 1
  • S. O. Shiryaeva
    • 1
    Email author
  • G. E. Mikheev
    • 1
  1. 1.Demidov Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations