Technical Physics

, Volume 64, Issue 6, pp 776–789 | Cite as

The Gas-Jet Method of Deposition of Nanostructured Silver Films

  • N. Yu. BykovEmail author
  • A. I. Safonov
  • D. V. Leshchev
  • S. V. Starinsky
  • A. V. Bulgakov


The synthesis of thin silver films by the gas-jet deposition method is experimentally and theoretically studied. When the metal is deposited onto silicon substrates from a supersonic jet of silver vapor with a helium carrier gas, nanostructured films with a 3−30 nm size of nanostructures are obtained for a 1230−1380 K range of jet source temperatures. The data on Ag–He gas-jet dynamics when it is expanded into vacuum (velocity, temperature, concentration, flux of particles onto a substrate) depending on parameters at the source (vapor temperature, flow rate of a carrier gas) are obtained by the method of direct simulation Monte Carlo. The range of optimal helium flow rates, when the efficiency of a gas-jet source is maximal, is determined. It is established that the presence of a background gas in a deposition chamber at pressure higher than 1 Pa decreases the flow of particles onto a substrate, and a simple way of its evaluation is proposed. Conditions for formation of silver clusters in the jet are determined by using the simulation. It is shown that for experimental deposition regimes there are no clusters in the jet, and the observed silver nanostructures are formed on the substrate surface.



The experimental part of the paper was supported by the Russian Science Foundation (project no. 16-19-10506). The computational studies were supported by the Ministry of Education and Science of the Russian Federation (project no. 16.8548.2017/8.9) with the use of computational resources of the supercomputer center of Peter the Great St. Petersburg Polytechnical University.


  1. 1.
    S. Hofmann, C. Ducati, R. J. Neill, S. Piscanec, A. C. Ferrari, J. Geng, R. E. Dunin-Borkowski, and J. Robertson, J. Appl. Phys. 94, 6005 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    M. Haruta, Chem. Rec. 3, 75 (2003).CrossRefGoogle Scholar
  3. 3.
    N. R. Agarwal, F. Neri, S. Trusso, A. Lucotti, and P. M. Ossi, Appl. Surf. Sci. 258, 9148 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    S. H. Cho, Phys. Med. Biol. 50, 163 (2005).CrossRefGoogle Scholar
  5. 5.
    J. M. Warrender and M. J. Aziz, Phys. Rev. B 75, 085433 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    P. M. Ossi, F. Neri, N. Santo, and S. Trusso, Appl. Phys. A 104, 829 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    S. V. Starinskiy, Yu. G. Shukhov, and A. V. Bulgakov, Tech. Phys. Lett. 42, 411 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    V. Svorcik, O. Kvitek, O. Lyutakov, J. Siegel, and Z. Kolska, Appl. Phys. A 102, 747 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    A. I. Safonov, S. V. Starinskii, V. S. Sulyaeva, N. I. Timoshenko, and E. Y. Gatapova, Tech. Phys. Lett. 43, 159 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    A. I. Safonov, V. S. Sulyaeva, N. I. Timoshenko, K. V. Kubrak, and S. V. Starinskiy, Phys. Lett. A 380, 3919 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    I. Yamada and T. Takagi, IEEE Trans. Electron Devices 34, 1018 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    P. Gatz and O. F. Hagena, Appl. Surf. Sci. 91, 169 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    K. Wagner, P. Piseri, H. V. Tafreshi, and P. Milani, J. Phys. D: Appl. Phys. 39, R439 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    M. N. Andreev, A. K. Rebrov, A. I. Safonov, and N. I. Timoshenko, Nanotechnol. Russ. 6, 587 (2011).CrossRefGoogle Scholar
  15. 15.
    M. J. Aziz, Appl. Phys A 93, 579 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    C. Polop, C. Rosiepen, S. Bleikamp, R. Drese, J. Mayer, A. Dimyati, and T. Michely, New J. Phys. 9, 74 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    S. V. Starinskiy, V. S. Sulyaeva, Yu. G. Shukhov, A. G. Cherkov, N. I. Timoshenko, A. V. Bulgakov, and A. I. Safonov, J. Struct. Chem. 58, 1581 (2017).CrossRefGoogle Scholar
  18. 18.
    E. Fazio, F. Neri, P. M. Ossi, N. Santo, and S. Trusso, Appl. Surf. Sci. 255, 9676 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).Google Scholar
  20. 20.
    R. Jansen, I. Wysong, S. Gimelshein, M. Zeifman, and U. Buck, J. Chem. Phys. 132, 244105 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    A. Borner, Z. Li, and D. A. Levin, AIP Conf. Proc. 1501, 565 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    N. Y. Bykov, Yu. E. Gorbachev, and V. V. Zakharov, AIP Conf. Proc. 1786, 050001 (2016).CrossRefGoogle Scholar
  23. 23.
    T. E. Itina, M. Sentis, and W. Marine, Appl. Surf. Sci. 252, 4433 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    N. Yu. Bykov and G. A. Lukianov, Thermophys. Aeromech. 13, 523 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    N. Y. Bykov, N. M. Bulgakova, A. V. Bulgakov, and G. A. Loukianov, Appl. Phys. A 79, 1097 (2004).ADSCrossRefGoogle Scholar
  26. 26. Scholar
  27. 27.
    A. Bondi, Phys. Chem. 68, 441 (1964).CrossRefGoogle Scholar
  28. 28.
    R. L. Johnston, Atomic and Molecular Clusters (Taylor & Francis, New York, 2002).CrossRefGoogle Scholar
  29. 29.
    J. F. Crifo, ICARUS 84, 414 (1990).ADSCrossRefGoogle Scholar
  30. 30.
    N. Y. Bykov and Yu. E. Gorbachev, Appl. Math. Comput. 296, 215 (2017).MathSciNetGoogle Scholar
  31. 31.
    B. M. Smirnov, Phys.-Usp. 167, 1117 (1997).CrossRefGoogle Scholar
  32. 32.
    Physicochemical Processes in Gas Dynamics, Vol. 1: Dynamics of Physicochemical Processes in Gas and PLasma, Ed. by G. G. Chernyi and S. A. Losev (Mosk. Gos. Univ., Moscow, 1995).Google Scholar
  33. 33.
    Gaussian 09, Revision D.01. Scholar
  34. 34.
    D. L. Baulch, J. Duxbury, S. J. Grant, and D. C. Montague, J. Phys. Chem. Ref. Data 10, 1 (1981).CrossRefGoogle Scholar
  35. 35.
    W. C. Gardiner, Combustion Chemistry (Springer, New York, 1984).CrossRefGoogle Scholar
  36. 36.
    D. I. Zhukhovitskii, J. Chem. Phys. 101, 5076 (1994).ADSCrossRefGoogle Scholar
  37. 37.
    B. M. Smirnov and A. S. Yatsenko, Phys.-Usp. 39, 211 (1996).CrossRefGoogle Scholar
  38. 38.
    V. N. Kondrat’ev and E. E. Nikitin, Kinetics and Mechanism of Gas-Phase Reactions (Nauka, Moscow, 1974).Google Scholar
  39. 39.
    J. A. Venablies, G. D. T. Spliller, and M. Hanbukah, Rep. Prog. Phys. 47, 399 (1984).ADSCrossRefGoogle Scholar
  40. 40.
    M. C. Tringides, Surface Diffusion: Atomistic and Collective Processes (Plenum, New York, 1997).CrossRefGoogle Scholar
  41. 41.
    Yu. A. Koshmarov and Yu. A. Ryzhov, Applied Rarefied Gas Dynamics (Mashinostroenie, Moscow, 1977).Google Scholar
  42. 42.
    H. Ashkenas and F. S. Sherman, in Rarefied Gas Dynamics, Ed. by J. H. de Leeuw (Academic, New York, 1965), p. 84.Google Scholar
  43. 43.
    A. K. Rebrov, in Rarefied Gas Dynamics, Ed. by O. M. Belotserkovskii (Springer, New York, 1985), p. 849.Google Scholar
  44. 44.
    A. V. Bulgakov, Proc. SPIE 2403, 75 (1995).ADSCrossRefGoogle Scholar
  45. 45.
    A. V. Bulgakov, M. R. Predtechensky, and A. P. Mayorov, Appl. Surf. Sci. 9698, 159 (1996).Google Scholar
  46. 46.
    S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge Univ. Press, 1970).zbMATHGoogle Scholar
  47. 47.
    O. F. Hagena, Surf. Sci. 106, 101 (1981).ADSCrossRefGoogle Scholar
  48. 48.
    O. F. Hagena, Z. Phys. D 20, 425 (1991).ADSCrossRefGoogle Scholar
  49. 49.
    V. G. Dulov and G. A. Luk’yanov, Gas Dynamics of Flow Processes (Nauka, Novosibirsk, 1984).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. Yu. Bykov
    • 1
    Email author
  • A. I. Safonov
    • 2
  • D. V. Leshchev
    • 1
  • S. V. Starinsky
    • 2
  • A. V. Bulgakov
    • 2
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations