Advertisement

Technical Physics

, Volume 64, Issue 4, pp 575–581 | Cite as

Model for Thermal Oxidation of Silicon

  • A. V. FadeevEmail author
  • Yu. N. DevyatkoEmail author
PHYSICAL ELECTRONICS
  • 1 Downloads

Abstract

Nanometer-thick silicon oxide films are needed for miniaturization and increase in the working rate of electronic devices. Interpretation of the initial stages of silicon oxidation is necessary for fabrication of such structures. A theoretical model of the thermal oxidation of thin silicon monolayers that takes into account an increase in the stress in the transition (oxide–substrate) layer due to oxygen accumulation therein is proposed.

Notes

ACKNOWLEDGMENTS

This work was supported by the Federal Agency for Scientific Organizations of the Russian Federation and by Program no. 0066-2019-0004 of the Ministry of Science and Higher Education of Russia for Valiev Institute of Physics.

REFERENCES

  1. 1.
    H. Watanabe, K. Kato, T. Uda, K. Fujita, and M. Ichikawa, Phys. Rev. Lett. 80, 345 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, J. Appl. Phys. 90, 2057 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    A. Bongiorno and A. Pasquarello, J. Mater. Sci. 40, 3047 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    H. C. Lu, T. Gustafsson, E. P. Gusev, and E. Garfunkel, Appl. Phys. Lett. 67, 1742 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    E. P. Gusev, H. C. Lu, T. Gustafsson, and E. Garfunkel, Mat. Res. Soc. Symp. Proc. 318, 69 (1994).CrossRefGoogle Scholar
  6. 6.
    B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    L. Tsetseris and S. T. Pantelides, Phys. Rev. Lett. 97, 116101 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    T. Akiyama and H. Kageshima, Surf. Sci. 576, L65 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    T. Hattori and T. Suzuki, Appl. Phys. Lett. 43, 470 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    F. G. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, Phys. Rev. B 38, 6084 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    V. D. Borman, E. P. Gusev, Yu. Yu. Lebedinskii, and V. I. Troyan, Phys. Rev. Lett. 67, 2387 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    K. Ohishy and T. Hattoty, Jpn. J. Appl. Phys. 33, L675 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    A. Szekeres, in Fundamental Aspects of Ultrathin Dielectrics on Si-Based Devices, Ed. by E. Garfunkel, E. Gusev, and A. Vul’ (Springer, 1998), p. 65.Google Scholar
  14. 14.
    R. M. C. Almadia, S. Goncalves, and I. J. R. Baumvol, Phys. Rev. B 61, 12992 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    O. V. Aleksandrov and A. I. Dusj, Semiconductors 42, 1370 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    G. Gerlach and K. Maser, Adv. Condens. Matter Phys. 2016, 7545632 (2016).CrossRefGoogle Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1998).zbMATHGoogle Scholar
  18. 18.
    H. Kageshima and K. Shiraishi, Phys. Rev. Lett. 81, 5936 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Valiev Institute of Physics and Technology, Russian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations