Advertisement

Technical Physics

, Volume 64, Issue 4, pp 523–526 | Cite as

Dynamic Strength Characteristics of Materials: Influence of the Specimen Size on Strain Rate

  • A. D. Evstifeev
  • G. A. Volkov
  • A. A. ChevrychkinaEmail author
  • Yu. V. Petrov
PHYSICAL SCIENCE OF MATERIALS
  • 1 Downloads

Abstract

Test results are presented for an additive material prepared of acrylonitrile-butadiene-styrene on a 3D printer. Dynamic tension experiments have been carried out using a tower-type drop hammer with an accelerator. Data obtained from different specimens demonstrate that high-strain-rate tensile experiments are feasible if the working part of the specimen is decreased. A theoretical analysis of test data using the incubation time criterion has been performed, and it has been found that analytical results are in good agreement with experimental data.

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research (grant no. 18-51-80008).

Section “METHOD OF DYNAMIC TENSILE TESTING” was written by A.A. Chevrychkina with support from the Russian Science Foundation (grant no. 17-11-01053).

Experiments were conducted on equipment of the resource center at St. Petersburg State University Scientific Park Extremal States of Materials and Structures.

REFERENCES

  1. 1.
    S. Lim, R. A. Buswell, et al., Autom. Constr. 21, 262 (2012).CrossRefGoogle Scholar
  2. 2.
    K. R. Hart and E. D. Wetzel, Eng. Fract. Mech. 177, 1 (2017).CrossRefGoogle Scholar
  3. 3.
    S. Ziemian, M. Okwara, and C. W. Ziemian, Rapid Prototyping J. 21, 270 (2015).CrossRefGoogle Scholar
  4. 4.
    A. K. Sood, R. K. Ohdar, and S. S. Mahapatra, Mater. Des. 31, 287 (2010).CrossRefGoogle Scholar
  5. 5.
    J. F. Rodriguez, J. P. Thomas, and J. E. Renaud, Rapid Prototyping J. 7, 148 (2001).CrossRefGoogle Scholar
  6. 6.
    Z. N. Yin and T. J. Wang, Mater. Sci. Eng. 527, 1461 (2010).CrossRefGoogle Scholar
  7. 7.
    G. Owolabi et al., Int. J. Mech. Mater. Eng. 11, 3 (2016).CrossRefGoogle Scholar
  8. 8.
    A. M. Bragov and A. K. Lomunov, Int. J. Impact Eng. 16, 321 (1995).CrossRefGoogle Scholar
  9. 9.
    U. S. Lindholm, J. Mech. Phys. Solids 12, 317 (1964).ADSCrossRefGoogle Scholar
  10. 10.
    N. A. Zlatin, S. M. Mochalov, G. S. Pugachev, and A. M. Bragov, Fiz. Tverd. Tela 16, 1752 (1974).Google Scholar
  11. 11.
    S. Kubota, Y. Ogata, Y. Wada, G. Simangunsong, H. Shimada, and K. Matsui, Int. J. Rock Mech. Min. Sci. 45, 397 (2008).CrossRefGoogle Scholar
  12. 12.
    X. Xiao, Polym. Test. 27, 164 (2008).CrossRefGoogle Scholar
  13. 13.
    G. Dean and B. Read, Polymer Testing 20 (6), 677 (2001).CrossRefGoogle Scholar
  14. 14.
    A. A. Chevrychkina, A. D. Evstifeev, and G. A. Volkov, Tech. Phys. 63, 381 (2018).CrossRefGoogle Scholar
  15. 15.
    Yu. V. Petrov, Dokl. Akad. Nauk SSSR 321, 66 (1991).Google Scholar
  16. 16.
    Y. V. Petrov and A. A. Utkin, Mater. Sci. 25, 153 (1989).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. D. Evstifeev
    • 1
  • G. A. Volkov
    • 1
    • 2
  • A. A. Chevrychkina
    • 1
    • 2
    Email author
  • Yu. V. Petrov
    • 1
    • 2
  1. 1. St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute for Problems in Mechanical Engineering, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations