Advertisement

Technical Physics

, Volume 63, Issue 12, pp 1771–1783 | Cite as

Crystallographic Features of the α-Phase Structure in Hafnium and Hafnium–Titanium Alloys

  • Yu. V. KhlebnikovaEmail author
  • D. P. Rodionov
  • L. Yu. Egorova
  • T. R. Suaridze
SOLID STATE
  • 5 Downloads

Abstract

The structure of a hafnium crystal undergoing β → α (bcc → hcp) polymorphic transformation upon gradual cooling and the structure of Hf55Ti45 and Hf30Ti70 alloys formed under various kinetic conditions of polymorphic transformation are studied. The structure of the α phase in cast hafnium is shown to consist of lath crystals grouped into packets. The misorientations between separate laths in a packet are less than 1°. The Hf–Ti alloys in the cast state exhibit a mixed structure consisting of α-phase crystals of several morphological types. A structure of packet martensite is observed in the Hf–Ti alloys after quenching. Each packet includes laths of several crystallographic orientations. There is no regular alternation of differently orientated laths in the packet. The same set of α-phase orientations within an initial β-phase grain is observed independently of the cooling rate of the Hf–Ti alloys upon β → α polymorphic transformation. The misorientation of substructural elements within an α-phase crystal in the Hf–Ti alloys is ~5° for the cast state and ~2.2° after quenching.

Notes

REFERENCES

  1. 1.
    N. N. Pilipenko, I. B. Dolya, P. N. V’yugov, S. D. Lavrinenko, and R. V. Azhazha, Inorg. Mater. 42, 617 (2006).CrossRefGoogle Scholar
  2. 2.
    P. N. V’yugov, O. E. Kozhevnikov, and T. Yu. Rudycheva, Vopr. At. Nauki Tekh., Ser.: Vak., Chist. Mater., Sverkhprovodn., No. 6, 19 (2009).Google Scholar
  3. 3.
    G. Subhash, G. Ravichandran, and B. J. Pletka, Metall. Mater. Trans. A 28, 1479 (1997).CrossRefGoogle Scholar
  4. 4.
    E. Cerreta and G. T. Gray, Metall. Mater. Trans. A 35, 1999 (2004).CrossRefGoogle Scholar
  5. 5.
    Anorganikum: Lehr- und Praktikumsbuch der anorganischen Chemie mit einer Einführung in die physikalische Chemie, Ed. by L. Kolditz (Deutscher Verlag der Wissenschaften, Berlin, 1984), Vol. 1.Google Scholar
  6. 6.
    G. I. Ruda, I. I. Kornilov, and V. V. Vavilova, Metally, No. 5, 203 (1975).Google Scholar
  7. 7.
    D. A. Mirzaev, V. G. Ul’yanov, M. M. Shteinberg, L. A. Ashikhmina, and T. N. Ul’yanova, Fiz. Met. Metalloved. 57, 1159 (1984).Google Scholar
  8. 8.
    Yu. V. Khlebnikova, D. P. Rodionov, V. A. Sazonova, L. Yu. Egorova, and Yu. V. Kaletina, Phys. Met. Metallogr. 114, 752 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    A. V. Dobromyslov, G. V. Dolgikh, Ya. Dutkevich, and T. L. Trenogina, Phys. Met. Metallogr. 107, 502 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Dobromyslov and N. I. Taluts, Phys. Met. Metallogr. 117, 693 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Dobromyslov and N. I. Taluts, Phys. Met. Metallogr. 119, 272 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    W. G. Burgers, Physica 1, 561 (1934).ADSCrossRefGoogle Scholar
  13. 13.
    Yu. V. Khlebnikova, V. A. Sazonova, D. P. Rodionov, N. F. Vil’danova, L. Yu. Egorova, Yu. V. Kaletina, I. L. Solodova, and V. M. Umova, Phys. Met. Metallogr. 108, 254 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Dobromyslov and N. I. Taluts, The Structure of Zirconuium and Its Alloys (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1997).Google Scholar
  15. 15.
    T. P. Chernyaeva and V. Ya. Gritsina, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved., No. 2, 15 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. V. Khlebnikova
    • 1
    Email author
  • D. P. Rodionov
    • 1
  • L. Yu. Egorova
    • 1
  • T. R. Suaridze
    • 1
  1. 1.Mikheev Institute of Metal Physics, Russian Academy of Sciences, Ural BranchYekaterinburgRussia

Personalised recommendations