Advertisement

Technical Physics

, Volume 63, Issue 12, pp 1861–1867 | Cite as

In Situ Modification and Analysis of the Composition and Crystal Structure of a Silicon Target by Ion-Beam Methods

  • Yu. V. BalakshinEmail author
  • A. A. Shemukhin
  • A. V. Nazarov
  • A. V. Kozhemiako
  • V. S. Chernysh
ELECTROPHYSICS, ELECTRON AND ION BEAMS, PHYSICS OF ACCELERATORS
  • 10 Downloads

Abstract

The method of Rutherford backscattering (RBS) with channeling is widely used in compositional analysis and structural determination. An experimental process line for in situ ion implantation and RBS spectrometry is presented, and its technical parameters are given. The parameters of a probing beam needed to reach a several-percent error in the study of distribution profiles of impurities and defects are detailed. The resolution of this method was estimated using the spectrum of alpha particles produced in the decay of 239Pu and based on the RBS spectrum from a silicon monocrystal. The implantation of Xe+ ions with an energy of 100 keV into a silicon monocrystal and the RBS analysis of targets in the channeling mode were performed without breach of vacuum conditions. The distribution profiles of implanted atoms and defects in irradiated monocrystals were examined.

Notes

REFERENCES

  1. 1.
    P. Horodek, K. Siemek, A. G. Kobets, M. Kulik, and I. N. Meshkov, Appl. Surf. Sci. 333, 96 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    H. Lenka, J. Meersschaut, P. K. Kandaswamy, H. Modarresi, H. Bender, A. Vantomme, and W. Vandervorst, Nucl. Instrum. Methods Phys. Res., Sect. B 331, 69 (2014).Google Scholar
  3. 3.
    V. C. Kummari, T. Reiner, W. Jiang, F. D. McDaniel, and F. D. Rout, Nucl. Instrum. Methods Phys. Res., Sect. B 332, 28 (2014).Google Scholar
  4. 4.
    A. Hallén and G. Moschetti, Nucl. Instrum. Methods Phys. Res., Sect. B 332, 172 (2014).Google Scholar
  5. 5.
    C.-L. Jia and Z.-N. Wei, Phys. B 437, 1 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    E. Wendler, G. Becker, J. Rensberg, E. Schmidt, S. Wolf, and W. Wesch, Nucl. Instrum. Methods Phys. Res., Sect. B 379, 195 (2016).Google Scholar
  7. 7.
    A. A. Shemukhin, A. V. Nazarov, Yu. V. Balakshin, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 354, 274 (2015).Google Scholar
  8. 8.
    A. A. Shemukhin, Y. V. Balakshin, V. S. Chernysh, S. A. Golubkov, N. N. Egorov, and A. I. Sidorov, Semiconductors 48, 517 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Shemukhin, Yu. V. Balakshin, A. P. Evseev, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 507 (2017).Google Scholar
  10. 10.
    S. J. Moloi and M. McPherson, Vacuum 104, 51 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    H.-Y. Chiang, S.-H. Park, M. Mayer, K. Schmid, M. Balden, U. Boesenberg, R. Jungwirth, G. Falkenberg, T. Zweifel, and W. Petry, J. Alloys Compd. 626, 381 (2015).CrossRefGoogle Scholar
  12. 12.
    R.-Z. Xiao, Z.-S. Wang, X.-B. Yuan, J.-J. Zhou, Z.-L. Mao, H.-S. Su, B. Li, and D.-J. Fu, Nucl. Instrum. Methods Phys. Res., Sect. B 384, 106 (2016).Google Scholar
  13. 13.
    O. S. Odutemowo, J. B. Malherbe, C. C. Theron, E. G. Njoroge, and E. Wendler, Vacuum 126, 101 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    M. Albéric, K. Müller, L. Pichon, Q. Lemasson, B. Moignard, C. Pacheco, E. Fontan, and I. Reiche, Talanta 137, 100 (2015).CrossRefGoogle Scholar
  15. 15.
    H. C. Santos, N. Added, T. F. Silva, and C. L. Rodrigues, Nucl. Instrum. Methods Phys. Res., Sect. B 345, 42 (2015).Google Scholar
  16. 16.
    C. Fourdrin, S. P. Camagna, C. Pacheco, M. Radepont, Q. Lemasson, B. Moignard, L. Pichon, B. Bourgeois, and V. Jeammet, Microchem. J. 126, 446 (2016).CrossRefGoogle Scholar
  17. 17.
    I. Ortega-Feliu, F. J. Ager, C. Roldán, M. Ferretti, D. Juanes, S. Scrivano, M. A. Respaldiza, L. Ferrazza, I. Traver, and M. L. Grilli, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 318 (2017).Google Scholar
  18. 18.
    L. Beck, E. Alloin, A. Vigneron, I. Caffy, and I. Klein, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 93 (2017).Google Scholar
  19. 19.
    Q. Q. Wu, J. J. Zhu, M. T. Liu, Z. Zhou, Z. An, W. Huang, Y. H. He, and D. Y. Zhao, Nucl. Instrum. Methods Phys. Res., Sect. B 296, 1 (2013).Google Scholar
  20. 20.
    M. Noun, M. Roumie, T. Calligaro, B. Nsouli, R. Brunetto, D. Baklouti, L. d’Hendecourt, and S. Della-Negra, Nucl. Instrum. Methods Phys. Res., Sect. B 306, 261 (2013).Google Scholar
  21. 21.
    M. Q. Ren, X. Ji, S. K. Vajandar, Z. H. Mi, A. Hoi, T. Walczyk, J. A. van Kan, A. A. Bettio, F. Watt, and T. Osipowicz, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 15 (2017).Google Scholar
  22. 22.
    J. Lacroix, J. Lao, J.-M. Nedelec, and E. Jallot, Nucl. Instrum. Methods Phys. Res., Sect. B 306, 153 (2013).Google Scholar
  23. 23.
    http://www.nndc.bnl.gov/chart/decaysearchdirect.jsp ?nuc=239PU&unc=nds.Google Scholar
  24. 24.
    https://www.originlab.com.Google Scholar
  25. 25.
    M. Nastasi, J. W. Mayer, and Y. Wang, Ion Beam Analysis: Fundamentals and Applications (CRC Press, London, 2015).Google Scholar
  26. 26.
    http://www.exphys.uni-linz.ac.at/stopping/.Google Scholar
  27. 27.
    V. V. Titov, Implantation of Fast Ions into Monocrystals (IEA, Moscow, 1978).Google Scholar
  28. 28.
    J. J. Ph. Elich, H. E. Roosendaal, and D. Onderdelinden, Radiat. Eff. Defects Solids 10, 175 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Balakshin
    • 1
    Email author
  • A. A. Shemukhin
    • 1
  • A. V. Nazarov
    • 1
  • A. V. Kozhemiako
    • 2
  • V. S. Chernysh
    • 2
  1. 1.Skobeltsyn Institute of Nuclear Physics, Moscow State UniversityMoscowRussia
  2. 2.Department of Physical Electronics, Faculty of Physics, Moscow State UniversityMoscowRussia

Personalised recommendations