Technical Physics

, Volume 63, Issue 12, pp 1762–1770 | Cite as

Structural Features, Physicochemical, and Optical Characteristics of Lithium Niobate Crystals Grown from Boron-Doped Melts

  • N. V. SidorovEmail author
  • N. A. Teplyakova
  • R. A. Titov
  • M. N. Palatnikov


Chemical interactions in the Li2O−B2O3−Nb2O5 system, as well as certain features of crystallization of LiNbO3 crystals growing from melts containing nonmetal impurities, are considered. It is shown that boron changes the structure of the melt and has a significant impact on the structure and physical characteristics of LiNbO3 : В crystals, practically not entering the lithium niobate structure. Notable changes and certain features were found in the Raman spectra of grown LiNbO3 : В crystals, which indicates changing the sequence of the main cations and vacancies along a crystal polar axis and distortion of the oxygen octahedrons. Meanwhile, the distortion of the oxygen octahedrons is anisotropic. LiNbO3 : В crystals have a higher structural homogeneity than congruent crystals, and are close in the number of NbLi defects to a crystal with a stoichiometric composition, differing from it by a substantially less photorefraction effect.



  1. 1.
    N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Ka-linnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, and Polaritons (Nauka, Moscow, 2003).Google Scholar
  2. 2.
    Yu. S. Kuz’minov, Electrooptical and Nonlinear-Optical Lithium Niobate Crystal (Nauka, Moscow, 1987).Google Scholar
  3. 3.
    S. C. Abrahams, Properties of Lithium Niobate (New York, 1989).Google Scholar
  4. 4.
    S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, J. Phys. Chem. Solids 27, 997 (1966).ADSCrossRefGoogle Scholar
  5. 5.
    M. Aillerie, P. Bourson, M. Mostefa, F. Abdi, and M. D. Fontana, J. Phys.: Conf. Ser. 416, 012001 (2013).Google Scholar
  6. 6.
    N. V. Sidorov, M. N. Palatnikov, and V. T. Kalinnikov, Tr. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk. Khim. Materialoved., No. 31, 464 (2015).Google Scholar
  7. 7.
    M. D. Fontana and P. Bourson, Appl. Phys. Rev. 2, 046002 (2015).CrossRefGoogle Scholar
  8. 8.
    N. V. Sidorov, O. Yu. Pikoul, A. A. Kruk, N. A. Teplyakova, A. A. Yanichev, and M. N. Palatnikov, Opt. Spectrosc. 118, 260 (2015). doi 10.1134/ S0030400X15020174ADSGoogle Scholar
  9. 9.
    A. A. Blistanov, V. M. Lyubchenko, and A. N. Goryunova, Crystallogr. Rep. 43, 78 (1998).ADSGoogle Scholar
  10. 10.
    N. V. Sidorov, A. A. Yanichev, M. N. Palatnikov, A. A. Gabain, and O. Yu. Pikoul, Opt. Spectrosc. 117, 72 (2014). doi 10.1134/S0030400X14070224ADSCrossRefGoogle Scholar
  11. 11.
    O. V. Makarova, M. N. Palatnikov, I. V. Biryukova, N. A. Teplyakova, and N. V. Sidorov, Inorg. Mater. 54, 49 (2018). doi 10.1134/S0020168518010089CrossRefGoogle Scholar
  12. 12.
    N. V. Sidorov, M. N. Palatnikov, A. A. Yanichev, R. A. Titov, and N. A. Teplyakova, Opt. Spectrosc. 121, 36 (2016). doi 10.1134/S0030400X16070195ADSCrossRefGoogle Scholar
  13. 13.
    N. V. Sidorov, M. N. Palatnikov, A. A. Yanichev, R. A. Titov, and N. A. Teplyakova, J. Appl. Spectrosc. 83, 750 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    M. N. Palatnikov, I. V. Biryukova, O. V. Makarova, V. V. Efremov, O. E. Kravchenko, and V. T. Kalinnikov, Tr. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk. Khim. Materialoved., No. 31, 434 (2015).Google Scholar
  15. 15.
    M. N. Palatnikov, I. V. Biryukova, S. M. Masloboeva, O. V. Makarova, D. V. Manukovskaya, and N. V. Sidorov, J. Cryst. Growth 386, 113 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    S. M. Masloboeva, M. N. Palatnikov, L. G. Arutyunyan, and D. I. Ivanenko, Izv. S.-Peterb. Tekhnol. Inst., No. 38, 34 (2017).Google Scholar
  17. 17.
    M. N. Palatnikov, N. V. Sidorov, I. V. Biryukova, O. B. Shcherbina, and V. T. Kalinnikov, Perspekt. Mater., No. 2, 93 (2011).Google Scholar
  18. 18.
    O. Yu. Pikoul and N. V. Sidorov, Laser Conoscopy of Crystals (Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, Apatity, 2014).Google Scholar
  19. 19.
    N. V. Sidorov and Yu. A. Serebryakov, Ferroelectrics 160, 191 (1994).CrossRefGoogle Scholar
  20. 20.
    N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, A. A. Yanichev, and R. A. Titov, Proc. SPIE 10176, 101761O (2016). doi 10.1117/12.2268155CrossRefGoogle Scholar
  21. 21.
    A. E. Semenov and E. V. Cherkasov, Zh. Fiz. Khim. 54, 2600 (1980).Google Scholar
  22. 22.
    A. A. Kruk, N. V. Sidorov, A. A. Yanichev, and M. N. Palatnikov, J. Appl. Spectrosc. 81, 1 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    V. S. Gorelik and P. P. Sverbil’, Inorg. Mater. 51, 1104 (2015). doi 10.1134/S0020168515100076CrossRefGoogle Scholar
  24. 24.
    M. R. Okamoto, P.-C. Wang, and J. F. Scott, Phys. Rev. B 32, 6787 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    N. V. Sidorov, B. N. Mavrin, P. G. Chufyrev, and M. N. Palatnikov, Phonon Spectra of Single Crystals of Lithium Niobate, Ed. by V. T. Kalinnikov (Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, Apatity, 2012).Google Scholar
  26. 26.
    N. V. Surovtsev, V. K. Malinovskii, A. M. Pugachev, and A. P. Shebanin, Phys. Solid State 45, 534 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    A. A. Anik’ev, Inzh. Zh.: Nauka Innovatsii, No. 7, 50 (2013).Google Scholar
  28. 28.
    M. Umarov, V. Gruzienko, A. Vtyurin, and A. Khod-zhabaev, Kompon. Tekhnol., No. 6, 138 (2010).Google Scholar
  29. 29.
    S. Uda, K. Shimamura, and T. Fukuda, J. Cryst. Growth 155, 229 (1995).ADSCrossRefGoogle Scholar
  30. 30.
    Yu. K. Voron’ko, S. B. Gessen, A. B. Kudryavtsev, A. A. Sobol’, E. V. Sorokin, S. N. Ushakov, and L. I. Tsymbal, Spectroscopy of Oxide Crystals for Quantum Electronics (Nauka, Moscow, 1991).Google Scholar
  31. 31.
    A. A. Sobol’, Doctoral Dissertation in Mathematics and Physics (Prokhorov General Physics Inst., Russian Academy of Sciences, Moscow, 2012).Google Scholar
  32. 32.
    Yu. K. Voron’ko, A. B. Kudryavtsev, V. V. Osiko, A. A. Sobol’, and E. V. Sorokin, Fiz. Tverd. Tela 29, 1348 (1987).Google Scholar
  33. 33.
    S. M. Masloboeva, N. V. Sidorov, M. N. Palatnikov, L. G. Arutyunyan, and P. G. Chufyrev, Russ. J. Inorg. Chem. 56, 1194 (2011).CrossRefGoogle Scholar
  34. 34.
    R. S. Bubnova, in Topical Problems of Inorganic Chemistry, Ed. by V. Ya. Shevchenko (Art-Ekspress, St. Petersburg, 2016), p. 65.Google Scholar
  35. 35.
    T. B. Bekker, Doctoral Dissertation in Geology and Mineralogy (Sobolev Inst. of Geology and Mineralogy, Russian Academy of Sciences, Novosibirsk, 2015).Google Scholar
  36. 36.
    N. I. Leonyuk and L. I. Leonyuk, Crystal Chemistry of Anhydrous Borates (Mosk. Gos. Univ., Moscow, 1983).Google Scholar
  37. 37.
    C. Huang, S. Wang, and N. Ye, J. Alloys Compd. 502, 211 (2010).CrossRefGoogle Scholar
  38. 38.
    M. P. F. Graça, M. G. Ferreira da Silva, and M. A. Valente, J. Non-Cryst. Solids 354, 901 (2008). doi 10.1016/j. jnoncrysol.2007.08.016ADSCrossRefGoogle Scholar
  39. 39.
    M. N. Palatnikov, Doctoral Dissertation in Engineering (Tananaev Inst. of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Russian Academy of Sciences, Apatity, 2010).Google Scholar
  40. 40.
    R. N. Balasanyan, V. T. Gabrielyan, and E. P. Koka-nyan, Kristallografiya 35, 1540 (1990).Google Scholar
  41. 41.
    R. N. Balasanyan, V. T. Gabrielyan, and L. M. Kaza-ryan, Dokl. Nats. Akad. Nauk Resp. Arm. Fiz., No. 2, 1 (2000).Google Scholar
  42. 42.
    O. F. Shirmer, O. Thiemann, and M. Wohlecke, J. Phys. Chem. Solids 52, 185 (1991).ADSCrossRefGoogle Scholar
  43. 43.
    D. M. Krol and G. Blasse, J. Chem. Phys. 73, 163 (1980).ADSCrossRefGoogle Scholar
  44. 44.
    L. Rebouta, M. F. da Suva, J. C. Soares, J. A. Sanz-Garcia, E. Dieguez, and F. Agulla-Lopez, Nucl. Instrum. Methods Phys. Res., Sect. B 64, 189 (1992).Google Scholar
  45. 45.
    L. M. Viting, High-Temperature Fluxes (Mosk. Gos. Univ., Moscow, 1991).Google Scholar
  46. 46.
    N. I. Leonyuk, Crystallogr. Rep. 53, 511 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. V. Sidorov
    • 1
    Email author
  • N. A. Teplyakova
    • 1
  • R. A. Titov
    • 1
  • M. N. Palatnikov
    • 1
  1. 1.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Center, Russian Academy of SciencesApatityRussia

Personalised recommendations