Advertisement

Technical Physics

, Volume 63, Issue 12, pp 1755–1761 | Cite as

Evolution of Shock Waves in Hot-Pressed Ceramics of Boron Carbide and Silicon Carbide

  • A. S. SavinykhEmail author
  • I. A. Cherepanov
  • S. V. Razorenov
  • A. I. Ovsienko
  • V. I. Rumyantsev
  • S. S. Ordan’yan
SOLID STATE
  • 10 Downloads

Abstract

In this paper we studied the evolution of shock compression waves in hot-pressed ceramics based on boron carbide and silicon carbide at a maximum compressive stress of 32 and 34 GPa, respectively, to determine the possible contribution of relaxation processes to the resistance to high-rate deformation. At a change in sample thickness from 0.5 to 8 mm, an appreciable decay of the elastic precursor was observed in boron carbide while an insignificant anomalous growth of the elastic precursor with a sample thickness was observed in the experiments with silicon carbide samples of various thickness. The measured value of the Hugoniot elastic limit of samples with a thickness of 8 mm was σHEL = 17.2 ± 1.3 GPa for boron carbide and σHEL = 15 ± 0.1 GPa for silicon carbide.

Notes

REFERENCES

  1. 1.
    A. P. Garshin, V. M. Gropyanov, G. P. Zaitsev, and S. S. Semenov, Ceramics for Machine Engineering (Nauchtekhlitizdat, Moscow, 2003).Google Scholar
  2. 2.
    G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shockwave Phenomena in Condensed Media (Yanus-K, Moscow, 1996).Google Scholar
  3. 3.
    N. V. Saveleva, Yu. V. Bayandin, A. S. Savinykh, G. V. Garkushin, E. A. Lyapunova, S. V. Razorenov, and O. B. Naimark, Tech. Phys. Lett. 41, 579 (2015). doi 10.1134/S1063785015060292ADSCrossRefGoogle Scholar
  4. 4.
    E. B. Zaretsky, J. Appl. Phys. 114, 183518 (2013). doi 10.1063/1.4830014ADSCrossRefGoogle Scholar
  5. 5.
    A. S. Savinykh, G. I. Kanel, S. V. Razorenov, and V. I. Rumyantsev, Tech. Phys. 58, 973 (2013). doi 10.1134/S1063784213070207CrossRefGoogle Scholar
  6. 6.
    N. K. Bourne, J. C. F. Millett, and I. Pickup, J. Appl. Phys. 81, 6019 (1997). https://doi.org/10.1063/ 1.363967ADSCrossRefGoogle Scholar
  7. 7.
    R. Feng, Y. M. Gupta, and G. Yuan, AIP Conf. Proc. 429, 483 (2008). https://doi.org/10.1063/1.55551ADSGoogle Scholar
  8. 8.
    M. E. Kipp and D. E. Grady, Proc. American Physical Society Topical Conf. on Shock Compression of Condensed Matter, Albuquerque, New Mexico, 1989, Ed. by S. C. Schmidt, J. N. Johnson, and L. W. Davison (North-Holland, Amsterdam, 1990), p. 377.Google Scholar
  9. 9.
    W. H. Gust, A. C. Holt, and E. B. Royce, J. Appl. Phys. 44, 550 (1973). https://doi.org/ doi 10.1063/1.1662224ADSCrossRefGoogle Scholar
  10. 10.
    T. J. Vogler, W. D. Reinhart, and L. C. Chhabil- das,    J.    Appl. Phys. 99, 023512 (2006). https://doi.org/10.1063/1.2159084ADSCrossRefGoogle Scholar
  11. 11.
    A. M. Rajendran and D. J. Grove, Int. J. Impact Eng. 18, 611 (1996). https://doi.org/10.1016/0734-743X(96)89122-6CrossRefGoogle Scholar
  12. 12.
    R. Feng, G. F. Raiser, and Y. M. Gupta, J. Appl. Phys. 79, 1378 (1996). https://doi.org/10.1063/1.361036ADSCrossRefGoogle Scholar
  13. 13.
    T. J. Holmquist and G. R. Johnson, J. Appl. Phys. 97, 093502 (2005). https://doi.org/10.1063/1.1881798ADSCrossRefGoogle Scholar
  14. 14.
    F. Th’evenot, J. Eur. Ceram. Soc. 6, 205 (1990). https://doi.org/10.1016/0955-2219(90)90048-KCrossRefGoogle Scholar
  15. 15.
    V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, J. Am. Ceram. Soc. 94, 3605 (2011). doi 10.1111/j.1551-2916.2011.04865.xCrossRefGoogle Scholar
  16. 16.
    A. K. Suri, C. Subramanian, J. K. Sonber, and T. S. R. Ch. Murthy, Int. Mater. Rev. 55, 4 (2010). https:// doi.org/10.1179/095066009X12506721665211CrossRefGoogle Scholar
  17. 17.
    H. Skarpeid, Master Thesis (Norwegian Univ. of Science and Technology, Trondheim, 2017).Google Scholar
  18. 18.
    G. G. Gnesin and V. I. Rumyantsev, Proc. Scientific Seminar “Topical Issues in Manufacturing of Modern Ceramic Materials,” St. Petersburg, Russia, 2015 (Politekh. Univ., St. Petersburg, 2015), p. 17.Google Scholar
  19. 19.
    L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972). https://doi.org/10.1063/1.1660986ADSCrossRefGoogle Scholar
  20. 20.
    G. V. Garkushin, S. V. Razorenov, V. I. Rumyantsev, and A. S. Savinykh, Mech. Solids 49, 616 (2014). doi 10.3103/S0025654414060028ADSCrossRefGoogle Scholar
  21. 21.
    A. S. Savinykh, G. V. Garkushin, S. V. Razorenov, and V. I. Rumyantsev, Tech. Phys. 60, 863 (2015). doi 10.1134/S1063784215060249CrossRefGoogle Scholar
  22. 22.
    W. D. Winkler and A. J. Stilp, Proc. American Physical Society Topical Conf. on Shock Compression of Condensed Matter, Williamsburg, Virginia, 1991, Ed. by S. C. Schmidt, R. D. Dick, J. W. Forbes, and D. G. Tasker (North-Holland, Amsterdam, 1992), p. 475. https:// doi.org/10.1016/B978-0-444-89732-9.50108-4Google Scholar
  23. 23.
    A. S. Savinykh, G. I. Kanel, S. V. Razorenov, and A. Rajendran, AIP Conf. Proc. 845, 888 (2006). https://doi.org/10.1063/1.2263464ADSCrossRefGoogle Scholar
  24. 24.
    N. S. Brar, Z. Rosenberg, and S. J. Bless, Proc. American Physical Society Topical Conf. on Shock Compression of Condensed Matter, Williamsburg, Virginia, 1991, Ed. by S. C. Schmidt, R. D. Dick, J. W. Forbes, and D. G. Tasker (North-Holland, Amsterdam, 1992), p. 467. https://doi.org/10.1016/B978-0-444-89732-9.50106-0Google Scholar
  25. 25.
    W. H. Gust and E. B. Royce, J. Appl. Phys. 42, 276 (1971). https://doi.org/10.1063/1.1659584ADSCrossRefGoogle Scholar
  26. 26.
    D. E. Grady, AIP Conf. Proc. 309, 741 (2008). https: //doi.org/10.1063/1.46206ADSCrossRefGoogle Scholar
  27. 27.
    S. Hayun, N. Frage, M. P. Dariel, and E. Zaretsky, AIP Conf. Proc. 955, 747 (2007). https://doi.org/ 10.1063/1.2833227ADSGoogle Scholar
  28. 28.
    Y. Zhang, T. Mashimo, Y. Uemura, M. Uchino, M. Kodama, K. Shibata, K. Fukuoka, M. Kikuchi, T. Kobayashi, and T. Sekine, J. Appl. Phys. 100, 113536 (2006). https://doi.org/10.1063/1.2399334ADSCrossRefGoogle Scholar
  29. 29.
    T. J. Vogler, W. D. Reinhart, and L. C. Chhabildas, J. Appl. Phys. 95, 4173 (2004). https://doi.org/ 10.1063/1.1686902ADSCrossRefGoogle Scholar
  30. 30.
    G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Savinykh
    • 1
    • 2
    Email author
  • I. A. Cherepanov
    • 3
  • S. V. Razorenov
    • 1
    • 2
  • A. I. Ovsienko
    • 4
  • V. I. Rumyantsev
    • 4
  • S. S. Ordan’yan
    • 5
  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.Moscow State UniversityMoscowRussia
  4. 4.OOO VIRIALSt. PetersburgRussia
  5. 5.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia

Personalised recommendations