Advertisement

Technical Physics

, Volume 63, Issue 12, pp 1749–1754 | Cite as

A New Approach to the Justification of the Wolkenstein–Ptitsyn Formula for the Parameter of the Vitrification Equation

  • D. S. SanditovEmail author
  • V. V. Mantatov
SOLID STATE
  • 4 Downloads

Abstract

An extended interpretation of the Wolkenstein–Ptitsyn formula for temperature band δTg, characterizing a range of transition from liquid to glass, is considered using the Razumovskaya–Bartenev concept. The derivation of this formula proposed by the authors does not depend on the specific type of temperature dependence of relaxation time. For silicate glasses, calculation δTg by this formula agrees with the calculation by the Williams–Landel–Ferry relation and with the left side of glass transition equation qτg = δTg, where q is the cooling rate and τg is relaxation time. Based on the experimental data, the calculation of parameters of the Razumovskaya–Bartenev equation for silicate glasses and amorphous polymers is carried out for the first time.

Notes

ACKNOWLEDGMENTS

The authors are grateful to Prof. I.V. Razumovskaya for consultation regarding the derivation of the Razumovskaya–Bartenev equation and discussion of the results.

The study was financially supported by the Ministry of Education and Science of Russian Federation (project no. 3.5406.2017/8.9).

REFERENCES

  1. 1.
    M. V. Vol’kenshtein and O. B. Ptitsyn, Zh. Tekh. Fiz. 26, 2204 (1956).Google Scholar
  2. 2.
    L. I. Mandel’shtam and M. A. Leontovich, Zh. Eksp. Teor. Fiz. 7, 438 (1937).Google Scholar
  3. 3.
    G. M. Bartenev, Dokl. Akad. Nauk SSSR 76, 227 (1951).Google Scholar
  4. 4.
    S. V. Nemilov, Glass Phys. Chem. 39, 609 (2013).CrossRefGoogle Scholar
  5. 5.
    D. S. Sanditov, J. Exp. Theor. Phys. 123, 429 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    S. V. Nemilov, J. Exp. Theor. Phys. 124, 758 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    D. S. Sanditov, J. Exp. Theor. Phys. 124, 760 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    V. G. Rostiashvili, V. I. Irzhak, and B. A. Rozenberg, Glass Transitions in Polymers (Khimiya, Leningrad, 1987).Google Scholar
  9. 9.
    D. S. Sanditov and G. M. Bartenev, Physical Properties of Disordered Structures (Nauka, Novosibirsk, 1982).Google Scholar
  10. 10.
    I. V. Razumovskaya and G. M. Bartenev, Proc. V All-Union Conf. on Vitreous State, Leningrad, USSR, 1969 (Nauka, Leningrad, 1971), p. 34.Google Scholar
  11. 11.
    M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).CrossRefGoogle Scholar
  12. 12.
    J. D. Ferry, Viscoelastic Properties of Polymers (Marcel Dekker, New York, 1970).Google Scholar
  13. 13.
    B. A. Bestul, Glastech. Ber. 32, 59 (1959).Google Scholar
  14. 14.
    D. S. Sanditov, D. B. Dorzhiev, and Zh. P. Baldanov, Zh. Fiz. Khim. 47, 2990 (1973).Google Scholar
  15. 15.
    S. S. Badmaev, S. Sh. Sangadiev, and D. S. Sanditov, Vestn. Buryat. Gos. Univ. Fiz. Khim., No. 3, 99 (2015).Google Scholar
  16. 16.
    V. A. Durov and M. I. Shakhparonov, Zh. Fiz. Khim. 53, 2456 (1979).Google Scholar
  17. 17.
    C. A. Angell, J. Phys. Chem. Solids 49, 836 (1988).CrossRefGoogle Scholar
  18. 18.
    http://www.sciglass.info/.Google Scholar
  19. 19.
    G. M. Bartenev and D. S. Sanditov, Relaxation Processes in Glassy Systems (Nauka, Novosibirsk, 1986).Google Scholar
  20. 20.
    S. V. Stolyar and S. A. Besedina, Fiz. Khim. Stekla 18 (3), 88 (1992).Google Scholar
  21. 21.
    G. M. Bartenev, Structure and Mechanical Properties of Inorganic Glasses (Stroiizdat, Moscow, 1966).Google Scholar
  22. 22.
    F. Simon, Z. Anorg. Allg. Chem. 203, 219 (1931).CrossRefGoogle Scholar
  23. 23.
    D. S. Sanditov and I. V. Razumovskaya, Polym. Sci. Ser. A 60, 156 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Buryat State UniversityUlan-UdeRussia
  2. 2.Institute of Physical Material Science, Siberian Branch, Russian Academy of SciencesUlan-UdeRussia

Personalised recommendations