Advertisement

Technical Physics

, Volume 63, Issue 12, pp 1829–1833 | Cite as

Properties of Silver Nanoparticles in the Presence of Dysprosium

  • S. I. RasmaginEmail author
  • V. I. Kryshtob
  • I. K. Novikov
PHYSICS OF NANOSTRUCTURES
  • 8 Downloads

Abstract

Various methods of binding rare-earth metal ions with nanoparticles make it possible to obtain materials with new properties. The “green” synthesis method has been used for obtaining silver nanoparticles functionalized with Dy3+ ions. The absorption and photoluminescence spectra of colloidal solutions have been measured, and the characteristics of resultant Ag nanoparticles have been analyzed using an electron microscope. The results of observations are in good agreement with the estimates obtained from the absorption spectra using the classical model. The nanoparticle shape (mainly spherical), size (d = 70 nm), and volume fraction (f = 6 × 10–4) of silver in the colloidal solutions have been determined. Functionalizing silver nanoparticles with dysprosium ions with the help of the technique developed in this study can be extended to other rare-earth elements.

Notes

REFERENCES

  1. 1.
    Ch. D. Geddes, US Pat. Appl. No. 12/016,247 (January 18, 2008).Google Scholar
  2. 2.
    R. Contreras-Caceres, B. Sierra-Martin, and A. Ch. Fernandes-Barbero, in Microsensors, Ed. by I. Minin (InTech, 2011), Chap. 7. http://www.e-booksdirectory. com/details.php?ebook=6386.Google Scholar
  3. 3.
    G. Chen, J. Damasco, H. Qiu, W. Shao, T. Ohulchanskyy, R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. Prasad, Nano Lett. 15, 7400 (2015). doi 10.1021/acs.nanolett.5b02830ADSCrossRefGoogle Scholar
  4. 4.
    F. Zhang, Photon Upconversion Materials (Springer, 2015).Google Scholar
  5. 5.
    Nano-Structures for Optics and Photonics, Ed. by B. Di Bartolo, J. Collins, and L. Silvestri (Springer, 2015).Google Scholar
  6. 6.
    W. Park, D. Lu, and S. Ahn, Chem. Soc. Rev. 44, 2940 (2015).CrossRefGoogle Scholar
  7. 7.
    W. Xu, X. Min, X. Chen, Y. Zhu, P. Zhou, S. Cui, S. Xu, L. Tao, and H. Song, Sci. Rep. 4, 1 (2014).Google Scholar
  8. 8.
    Yu. A. Krutyakov, A. A. Kudrinskiy, A. Yu. Olenin, and G. V. Lisichkin, Russ. Chem. Rev. 77, 233 (2008). http: //www.turpion.org/php/paper.phtml?journal_id=rc& paper_id=3751.ADSCrossRefGoogle Scholar
  9. 9.
    D. D. Evanoff and G. Chumanov, Chem. Phys. Lett. 6, 1221 (2005).Google Scholar
  10. 10.
    S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram, J. Adv. Res. 7, 17 (2016).CrossRefGoogle Scholar
  11. 11.
    A. K. Mittal, Y. Chisti, and U. C. Banerjee, Biotechnol. Adv. 31, 346 (2013).CrossRefGoogle Scholar
  12. 12.
    V. A. Basiuk and E. V. Basiuk, Green Processes for Nanotechnology (Springer, 2015).CrossRefGoogle Scholar
  13. 13.
    U. K. Kumar-Parashar, P. S. Saxena, and A. Srivastava, Dig. J. Nanomater. Biostruct. 4, 159 (2009). http:// www.chalcogen.ro/1Kumar-Parashar.pdf.Google Scholar
  14. 14.
    J. H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, Phys. Rev. B 48, 18178 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    E. W. Barrera, M. C. Pujol, C. Cascales, C. Zaldo, K. H. Park, S. B. Choi, F. Rotermund, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Diaz, Appl. Phys. B 106, 409 (2012). doi 10.1007/s00340-011-4691-0ADSCrossRefGoogle Scholar
  16. 16.
    R. J. Amjad, M. R. Dousti, A. Iqbal, S. Z. Hussain, M. R. Sahar, and S. F. Shaukat, Measurement 74, 87 (2015). http://dx.doi.org/10.1016/j.measurement. 2015.07.002CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. I. Rasmagin
    • 1
    Email author
  • V. I. Kryshtob
    • 1
  • I. K. Novikov
    • 2
  1. 1.Prokhorov General Physics Institute, Russian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations