Advertisement

Technical Physics

, Volume 63, Issue 12, pp 1854–1860 | Cite as

Decomposition of Aromatic Compounds Relevant to Organic Electronics under Exposure to Low-Energy Electrons

  • M. V. Muftakhov
  • R. V. KhatymovEmail author
  • R. F. Tuktarov
ELECTROPHYSICS, ELECTRON AND ION BEAMS, PHYSICS OF ACCELERATORS
  • 13 Downloads

Abstract

The persistence of molecules to destruction under the action of low-energy (0–15 eV) electrons is investigated for a representative series of aromatic compounds of interest to organic electronics and photonics. The energy regions of the most effective interaction of free electrons with isolated molecules, which leads to the dissociative decay of molecules due to the formation of short-lived negative molecular ions unstable to fragmentation, are determined using resonance electron capture negative ion mass spectrometry. The characteristic fragmentation channels for molecular ions are revealed for some groups of compounds, and the threshold energies of the most significant fragmentation processes are estimated. Polycyclic aromatic hydrocarbons and oligophenyls are stable to the action of electrons in the electron energy range ~0–3 eV, above which these compounds are decomposed into the single channel of hydrogen atom detachment. For compounds with heterocycles (oxadiazole and maleimide derivatives) in their structure, the stability range narrows down to ~0–1 eV. Electrons with energies exceeding this range initiate the decay of molecules (anions) via various channels among which the detachment of a cyanate anion from a heterocyclic nucleus is the most intense and destructive process.

Notes

REFERENCES

  1. 1.
    S. Scholz, D. Kondakov, B. Lüssem, and K. Leo, Chem. Rev. 115, 8449 (2015). doi 10.1021/cr400704vCrossRefGoogle Scholar
  2. 2.
    N. Grossiord, J. M. Kroon, R. Andriessen, and P. W. M. Blom, Org. Electron. 13, 432 (2012). https://doi.org10.1016/j.orgel.2011.11.027CrossRefGoogle Scholar
  3. 3.
    E. A. Silinsh and V. Capek, Organic Molecular Crystals: Interaction, Localization and Transport Phenomena (AIP, New York, 1994).Google Scholar
  4. 4.
    Electron-Molecule Interactions and Their Applications, Ed. by L. G. Christophorou (Academic, New York, 1984), Vol. 2.Google Scholar
  5. 5.
    L. G. Christophorou, Adv. Electron. Electron Phys. 46, 55 (1978). https://doi.org/10.1016/S0065-2539(08)60411-4CrossRefGoogle Scholar
  6. 6.
    I. I. Fabrikant, S. Eden, N. J. Mason, and J. Fedor, Adv. At., Mol., Opt. Phys. 66, 545 (2017). https:// doi.org/10.1016/bs.aamop.2017.02.002CrossRefGoogle Scholar
  7. 7.
    M. V. Muftakhov, R. V. Khatymov, P. V. Shchukin, A. V. Pogulay, and V. A. Mazunov, J. Mass Spectrom. 45, 82 (2010). doi 10.1002/jms.1693Google Scholar
  8. 8.
    D. A. Ponomarev and V. V. Takhistov, J. Mol. Struct. 784, 198 (2006). https://doi.org/10.1016/j.molstruc.2005.07.035ADSCrossRefGoogle Scholar
  9. 9.
    W. Sailer, A. Pelc, S. Matejcik, E. Illenberger, P. Scheier, and T. D. Märk, J. Chem. Phys. 117, 7989 (2002). https://doi.org/10.1063/1.1510446ADSCrossRefGoogle Scholar
  10. 10.
    R. V. Khatymov, M. V. Muftakhov, V. A. Mazunov, D. V. Nedopekin, I. V. Galyautdinov, and V. N. Odinokov, Russ. Chem. Bull. 51, 306 (2002). https:// doi.org/10.1023/A:1015411928216CrossRefGoogle Scholar
  11. 11.
    P. V. Shchukin, M. V. Muftakhov, and R. V. Khatymov, Mass-Spektrom. 10, 158 (2013).Google Scholar
  12. 12.
    S. A. Pshenichnyuk and A. Modelli, Int. J. Mass Spectrom. 294, 93 (2010). doi 10.1016/j.ijms.2010.05.025CrossRefGoogle Scholar
  13. 13.
    V. A. Mazunov, P. V. Shchukin, R. V. Khatymov, and M. V. Muftakhov, Mass-Spektrom. 3, 11 (2006).Google Scholar
  14. 14.
    Organic Electronics Materials and Devices, Ed. by S. Ogawa (Springer, Tokyo, 2015). doi 10.1007/978-4-431-55654-1Google Scholar
  15. 15.
    S. Forget and S. Chénais, Organic Solid-State Lasers (Springer, 2013). doi 10.1007/978-3-642-36705-2CrossRefGoogle Scholar
  16. 16.
    N. A. Borisevich and V. A. Tolkachev, Sov. Phys. Usp. 25, 865 (1982). doi 10.1070/PU1982v025n12ABEH005001ADSCrossRefGoogle Scholar
  17. 17.
    A. J. Wilson and K. A. Willets, Annu. Rev. Anal. Chem. 9, 27 (2016). doi 10.1146/annurev-anchem-071015-041612CrossRefGoogle Scholar
  18. 18.
    Printed Organic and Molecular Electronics, Ed. by D. R. Gamota, P. Brazis, K. Kalyanasundaram, and J. Zhang (Springer, 2004). doi 10.1007/978-1-4419-9074-7Google Scholar
  19. 19.
    R. V. Khatymov, V. Yu. Markov, R. F. Tuktarov, I. N. Ioffe, M. V. Muftakhov, S. M. Avdoshenko, A. V. Pogulay, and L. N. Sidorov, Int. J. Mass Spectrom. 272, 119 (2008). doi 10.1016/j.ijms.2008.01.007CrossRefGoogle Scholar
  20. 20.
    M. V. Muftakhov, Yu. V. Vasil’ev, and V. A. Mazunov, Rapid Commun. Mass Spectrom. 13, 1104 (1999). doi 10.1002/(SICI)1097-0231(19990630)13:12<1104::AID- RCM619>3.0.CO;2-CADSCrossRefGoogle Scholar
  21. 21.
    M. V. Muftakhov, R. V. Khatymov, V. A. Mazunov, D. A. Ponomarev, V. V. Takhistov, and L. P. Vatlina, Rapid Commun. Mass Spectrom. 14, 1482 (2000). doi 10.1002/1097-0231(20000830)14:16<1482::AID-RCM50>3.0.CO;2-EADSCrossRefGoogle Scholar
  22. 22.
    I. Kh. Aminev, V. I. Khvostenko, V. P. Yur’ev, and G. A. Tolstikov, Bull. Acad. Sci. USSR, Div. Chem. Sci. 22, 1831 (1973). https://doi.org/10.1007/ BF00932128CrossRefGoogle Scholar
  23. 23.
    S. Tobita, M. Meinke, E. Illenberger, L. G. Christophorou, H. Baumgärtel, and S. Leach, Chem. Phys. 161, 501 (1992). doi 10.1016/0301-0104(92)80165-RCrossRefGoogle Scholar
  24. 24.
    S. Denifl, S. Ptasińska, P. Sonnweber, D. Scheier, F. Liu, J. Hagelberg, L. Mack, T. Scott, and T. D. Märk, J. Chem. Phys. 123, 104308 (2005). https://doi.org/ 10.1063/1.2008947ADSCrossRefGoogle Scholar
  25. 25.
    M. V. Muftakhov, R. V. Khatymov, V. A. Mazunov, V. V. Takhistov, and D. A. Ponomarev, Chem. Phys. Rep. 19, 2287 (2001).Google Scholar
  26. 26.
    Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds (CRC Press, Boca Raton, 2003).Google Scholar
  27. 27.
    J. Cioslowski, G. Liu, M. Martinov, P. Piskorz, and D. Moncrieff, J. Am. Chem. Soc. 118, 5261 (1996). doi 10.1021/ja9600439CrossRefGoogle Scholar
  28. 28.
    G. Blanquart, Int. J. Quantum Chem. 115, 796 (2015). doi 10.1002/qua.24904CrossRefGoogle Scholar
  29. 29.
    B. N. Papas, S. Wang, N. J. DeYonker, H. L. Woodcock, and H. F. Schaefer, J. Phys. Chem. A 107, 6311 (2003). doi 10.1021/jp030494xCrossRefGoogle Scholar
  30. 30.
    R. V. Khatymov, M. V. Muftakhov, and P. V. Shchukin, Rapid Commun. Mass Spectrom. 31, 1729 (2017). https://doi.org/10.1002/rcm.7945ADSCrossRefGoogle Scholar
  31. 31.
    NIST Chemistry WebBook. https://webbook.nist.gov/ chemistry/.Google Scholar
  32. 32.
    M. V. Muftakhov, V. A. Mazunov, and V. V. Takhistov, Russ. Chem. Bull. 43, 988 (1994). doi 10.1007/ BF01558063CrossRefGoogle Scholar
  33. 33.
    M. V. Muftakhov, R. V. Khatymov, and V. A. Mazunov, Russ. Chem. Bull. 49, 1489 (2000). doi 10.1007/ BF02495108CrossRefGoogle Scholar
  34. 34.
    R. V. Khatymov, M. V. Muftakhov, P. V. Schukin, and V. A. Mazunov, Russ. Chem. Bull. 53, 738 (2004). doi 10.1023/B:RUCB.0000037835.28726.0aCrossRefGoogle Scholar
  35. 35.
    R. V. Khatymov, M. V. Muftakhov, P. V. Schukin, and V. A. Mazunov, Russ. Chem. Bull. 52, 1974 (2003). https://doi.org/10.1023/B:RUCB.0000009641. 29142.3cCrossRefGoogle Scholar
  36. 36.
    D. V. Mavrodiev, M. F. Abdullin, D. A. Sainiev, I. M. Sakhautdinov, L. V. Khalilova, V. K. Mavrodiev, and I. I. Furlei, Khim. Vys. Energ. 47 (2), 83 (2013). doi 10.7868/S0023119713020087Google Scholar
  37. 37.
    V. I. Khvostenko, I. I. Furlei, A. N. Kost, V. A. Budylin, and L. G. Yudin, Dokl. Akad. Nauk SSSR 189, 778 (1969).Google Scholar
  38. 38.
    A. Modelli, D. Jones, and S. A. Pshenichnyuk, J. Chem. Phys. 139, 184305 (2013). doi 10.1063/ 1.4829057ADSCrossRefGoogle Scholar
  39. 39.
    M. V. Muftakhov, N. L. Asfandiarov, and V. I. Khvo-stenko, J. Electron Spectrosc. Relat. Phenom. 69, 165 (1994). doi 10.1016/0368-2048(94)02047-4CrossRefGoogle Scholar
  40. 40.
    R. V. Khatymov, R. F. Tuktarov, and M. V. Muftakhov, JETP Lett. 93, 437 (2011). doi 10.1134/ S002136401108011XADSCrossRefGoogle Scholar
  41. 41.
    R. F. Tuktarov, R. V. Khatymov, P. V. Shchukin, M. V. Muftakhov, V. Yu. Markov, and O. A. Solomeshch, JETP Lett. 90, 515 (2009). doi 10.1134/ S0021364009190047ADSCrossRefGoogle Scholar
  42. 42.
    R. V. Khatymov, P. V. Shchukin, R. F. Tuktarov, M. V. Muftakhov, V. Yu. Markov, and I. V. Goldt, Int. J. Mass Spectrom. 303, 55 (2011). doi 10.1016/j.ijms. 2010.12.014CrossRefGoogle Scholar
  43. 43.
    R. V. Khatymov, V. Yu. Markov, R. F. Tuktarov, I. N. Ioffe, M. V. Muftakhov, S. M. Avdoshenko, A. V. Pogulay, and L. N. Sidorov, Int. J. Mass Spectrom. 272, 119 (2008). doi 10.1016/J.IJMS.2008.01.007CrossRefGoogle Scholar
  44. 44.
    C. D. Cooper and R. N. Compton, J. Chem. Phys. 59, 3550 (1973). https://doi.org/10.1063/1.1680519ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Muftakhov
    • 1
  • R. V. Khatymov
    • 1
    Email author
  • R. F. Tuktarov
    • 1
  1. 1.Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of SciencesUfaRussia

Personalised recommendations