Technical Physics

, Volume 63, Issue 12, pp 1808–1813 | Cite as

Study of the Dynamics of Water Droplet Freezing on the Surface of Nanocomposites in the Long-Wavelength Infrared Range

  • A. A. MelnikovEmail author
  • V. S. Nagornaya
  • L. V. Solov’yanchik
  • S. V. Kondrashov


A technique is developed to determine the freezing time, thermal resistance, heat transfer coefficient, and cooling power of water droplet on the surface of studied materials by means of video recording in the long-wavelength infrared range. These parameters are found for water droplets on a hydrophobic coating based on organosilicon polymer filled with carbon nanotubes as well as on polyethylene terephthalate film. On hydrophobic coatings the water droplets froze 1.5–4 times slower than on polyethylene terephthalate film, which is explained by an increase in the contact angle and thermal resistance between the droplet and surface of the coating. Correlation between the freezing time and thermal resistance reveals that the heat flux from the droplet towards the material surface is crucial for the freezing time. In tests, partial adiabatic droplet freezing with the following complete isothermal freezing were observed during a single freezing process. The studied hydrophobic coatings may potentially be used as anti-icing coatings.



  1. 1.
    E. N. Kablov, Aviats. Mater. Tekhnol., No. 1, 3 (2015). doi 10.18577/2071-9140-2015-0-1-3-33Google Scholar
  2. 2.
    E. N. Kablov, Vopr. Materialoved., No. 1, 64 (2006).Google Scholar
  3. 3.
    E. N. Kablov, Zashch. Bezop., No. 4, 28 (2014).Google Scholar
  4. 4.
    E. N. Kablov and G. M. Gunyaev, in Aviation Materials. 75 Years (Vseross. Nauchno-Issled. Inst. Aviats. Mater., Moscow, 2007), p. 225.Google Scholar
  5. 5.
    I. N. Gulyaev, A. G. Gunyaeva, A. E. Raskutin, M. Yu. Fedotov, and K. V. Sorokin, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., No. 4, 10 (2013).Google Scholar
  6. 6.
    S. V. Kondrashov, K. A. Shashkeev, O. V. Popkov, and L. V. Solov’yanchik, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., No. 3, 7 (2016). doi 10.18577/2307-6046-2016-0-3-7-7Google Scholar
  7. 7.
    L. V. Semenova and A. A. Kozlova, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., No. 4, 8 (2013).Google Scholar
  8. 8.
    V. M. Buznik, Aviats. Mater. Tekhnol., No. 1, 29 (2013).Google Scholar
  9. 9.
    T. M. Schutzius et al., Langmuir 31, 4807 (2014).CrossRefGoogle Scholar
  10. 10.
    M. J. Kreder et al., Nat. Rev. Mater. 1, 15003 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    J. B. Boreyko and C. P. Collier, ACS Nano 7, 1618 (2013).CrossRefGoogle Scholar
  12. 12.
    L. Mishchenko et al., ACS Nano 4, 7699 (2010).CrossRefGoogle Scholar
  13. 13.
    S. A. Kulinich and M. Farzaneh, Langmuir 25, 8854 (2009).CrossRefGoogle Scholar
  14. 14.
    G. Momen, R. Jafari, and M. Farzaneh, Appl. Surf. Sci. 349, 211 (2015).CrossRefGoogle Scholar
  15. 15.
    S. Zheng et al., Mater. Des. 93, 261 (2016).CrossRefGoogle Scholar
  16. 16.
    L. B. Boinovich et al., ACS Appl. Mater. Interfaces 5, 2549 (2013).CrossRefGoogle Scholar
  17. 17.
    L. Cao et al., Langmuir 25, 12444 (2009).CrossRefGoogle Scholar
  18. 18.
    E. S. Grinats et al., Vestn. Mosk. Gos. Obl. Univ. Ser.: Fiz.-Mat., No. 3, 84 (2013).Google Scholar
  19. 19.
    C. Antonini et al., Cold Reg. Sci. Technol 67, 58 (2011).CrossRefGoogle Scholar
  20. 20.
    L. Boinovich et al., Langmuir 30, 1659 (2014).CrossRefGoogle Scholar
  21. 21.
    A. Alizadeh et al., Langmuir 28, 3180 (2012).CrossRefGoogle Scholar
  22. 22.
    F. Arianpour, M. Farzaneh, and S. A. Kulinich, Appl. Surf. Sci. 265, 546 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    T. B. Nguyen, S. Park, and H. Lim, Appl. Surf. Sci. 435, 585 (2018).ADSCrossRefGoogle Scholar
  24. 24.
    T. M. Schutzius et al., Langmuir 31, 4807 (2014).CrossRefGoogle Scholar
  25. 25.
    A. F. Ioffe, Semicondutor Thermoelements and Thermoelectric Cooling (Akad. Nauk SSSR, Moscow, 1956; Infosearch, London, 1957).Google Scholar
  26. 26.
    L. I. Anatychuk and V. A. Semenyuk, Optimal Control of Properties of Thermoelectric Materials and Devices (Prut, Chernovitsy, 1992).Google Scholar
  27. 27.
    A. A. Melnikov, A. M. Phiri, I. V. Tarasova, and N. V. Batrameev, Semiconductors 51, 858 (2017).ADSCrossRefGoogle Scholar
  28. 28.
    K. A. Shashkeev, V. S. Nagornaya, I. A. Volkov, S. V. Kon-drashov, T. P. D’yachkova, A. I. Kondakov, K. M. Borisov, and G. Yu. Yurkov, Russ. J. Appl. Chem. 90, 1107 (2017).CrossRefGoogle Scholar
  29. 29.
    J. Hu et al., Appl. Surf. Sci. 317, 534 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Melnikov
    • 1
    Email author
  • V. S. Nagornaya
    • 1
  • L. V. Solov’yanchik
    • 1
  • S. V. Kondrashov
    • 1
  1. 1.All-Russia Institute of Aviation MaterialsMoscowRussia

Personalised recommendations