Advertisement

Technical Physics

, Volume 63, Issue 12, pp 1722–1729 | Cite as

Estimation of Statistically Unpredictable Changes in Physical Quantities over Large Observation Intervals

  • I. I. Gorban’Email author
THEORETICAL AND MATHEMATICAL PHYSICS
  • 1 Downloads

Abstract

A new method has been proposed for estimating statistically unpredictable changes of physical quantities over large observation intervals. The method is based on the assumption that the quantities being measured experience slow changes, and the mean value of these changes is statistically immune to noise. The method considers the action of statistically stable, unstable, and deterministic regularities. In test examples, noise immunity could be increased by more than 20 dB.

Notes

REFERENCES

  1. 1.
    GOST 8.207-76. Direct Measurements with Multiple Oservations. Methods of Processing the Results of Observations. Basic Principles (Izd. Standartov, Moscow, 2001).Google Scholar
  2. 2.
    I. I. Gorban, The Statistical Stability Phenomenon (Naukova Dumka, Kyiv, 2014).Google Scholar
  3. 3.
    I. I. Gorban, The Statistical Stability Phenomenon (Springer, 2017).CrossRefGoogle Scholar
  4. 4.
    I. I. Gorban, Ramdomness and Hyper-Randomness (Naukova Dumka, Kyiv, 2016).Google Scholar
  5. 5.
    I. I. Gorban, Ramdomness and Hyper-Randomness (Springer, 2018).CrossRefzbMATHGoogle Scholar
  6. 6.
    V. V. Eskov, T. V. Gavrilenko, V. M. Eskov, and Yu. V. Vokhmina, Tech. Phys. 62, 1611 (2017).CrossRefGoogle Scholar
  7. 7.
    I. I. Gorban, Tech. Phys. 59, 333 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    I. I. Gorban, Sist. Issled. Inf. Tekhnol., No. 4, 207 (2015).Google Scholar
  9. 9.
    I. I. Gorban, Radioelectron. Commun. Syst. 55, 99 (2012).CrossRefGoogle Scholar
  10. 10.
    J. B. Johnson, Phys. Rev. 26, 71 (1925).Google Scholar
  11. 11.
    W. Schottky, Phys. Rev. 28, 74 (1926).Google Scholar
  12. 12.
    Sh. M. Kogan, Sov. Phys. Usp. 28, 170 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    G. P. Zhigal’skii, Phys.-Usp. 46, 449 (2003).CrossRefGoogle Scholar
  14. 14.
    I. I. Gorban, Mat. Mash. Sist., No. 4, 104 (2017).Google Scholar
  15. 15.
    I. I. Gorban, J. Autom. Inf. Sci. 49 (7), 1 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    http://forecast.izmiran.rssi.ru/bankr.htm.Google Scholar
  17. 17.
    http://thermo.karelia.ru/weather/w_history.php.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Problems of Mathematical Machines and Systems, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations