Advertisement

Technical Physics

, Volume 63, Issue 11, pp 1626–1628 | Cite as

Thermal-Conductive Boards Based on Aluminum with an Al2O3 Nanostructured Layer for Products of Power Electronics

  • E. N. Muratova
  • V. A. Moshnikov
  • V. V. Luchinin
  • A. A. Bobkov
  • I. A. Vrublevsky
  • K. V. Chernyakova
  • E. I. Terukov
SOLID STATE ELECTRONICS
  • 19 Downloads

Abstract

The experimental results of electrical and thermal characteristics of circuit boards based on aluminum with a nanostructured layer of anodic aluminum oxide and copper conductors for assembling high-power field-effect transistors have been considered. It has been shown that the presence of a thin dielectric layer and thick aluminum base with high thermal conductivity provides a uniform distribution of heat generated by the active element over the entire volume of the board without formation of local regions with increased temperature. The experimental results have shown that the temperature gradient between the heat source and anodic aluminum oxide surface is about 17–18°C at a surface heat power of 4.4 W/cm2.

Notes

REFERENCES

  1. 1.
    V. P. Afanas’ev, E. I. Terukov, and A. A. Sherchenkov, Thin-Film Silicon-Based Solar Cells (S.-Peterb. Gos. Elektrotekh. Univ., St. Petersburg, 2011).Google Scholar
  2. 2.
    R. Huber, Vestn. Elektron., No. 2, 12 (2010).Google Scholar
  3. 3.
    U. Bechtloff, R. Fiehler, J. Schauer, and K. Schmieder, Tekhnol. Elektron. Prom-sti., No. 3, 22 (2005).Google Scholar
  4. 4.
    A. V. Afanas’ev, E. V. Golikova, S. I. Goloudina, et al., Chemical Methods for Liquid-Phase Synthesis of Ceramic and Polymer Nanomaterials (S.-Peterb. Gos. Elektrotekh. Univ., St. Petersburg, 2013).Google Scholar
  5. 5.
    O. A. Aleksandrova, A. N. Aleshin, A. O. Belorus, A. A. Bobkov, A. V. Guz’, A. A. Kal’nin, I. E. Kononova, V. S. Levitskii, D. S. Mazing, E. V. Maraeva, L. B. Matyushkin, P. P. Moskvin, V. A. Moshnikov, E. N. Muratova, S. S. Nalimova, et al., Novel Nanomaterials. Synthesis. Diagnostics. Modeling (S.-Peterb. Gos. Elektrotekh. Univ., St. Petersburg, 2015).Google Scholar
  6. 6.
    A. A. Shemukhin and E. N. Muratova, Tech. Phys. Lett. 40, 219 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    V. V. Luchinin, V. A. Moshnikov, E. N. Muratovà, and R. Sh. Samigullin, J. Phys.: Conf. Ser. 586, 012008 (2015).Google Scholar
  8. 8.
    I. A. Vrublevsky, S. K. Dik, A. S. Terekh, A. V. Smirnov, and K. V. Chernyakova, Probl. Fiz., Mat. Tekh. 12, 101 (2012).Google Scholar
  9. 9.
    I. Vrublevsky, K. Chernyakova, A. Ispas, A. Bund, N. Gaponik, and A. Dubavik, J. Lumin. 131, 938 (2011).CrossRefGoogle Scholar
  10. 10.
    A. Gordeev et al., Silovaya Elektron., No. 3, 20 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. N. Muratova
    • 1
  • V. A. Moshnikov
    • 1
  • V. V. Luchinin
    • 1
  • A. A. Bobkov
    • 1
  • I. A. Vrublevsky
    • 2
  • K. V. Chernyakova
    • 2
  • E. I. Terukov
    • 3
  1. 1.St. Petersburg Electrotechnical University LETISt. PetersburgRussia
  2. 2.Belarusian State University of Informatics and RadioelectronicsMinskBelarus
  3. 3.Ioffe Institute,St. PetersburgRussia

Personalised recommendations