Advertisement

Technical Physics

, Volume 63, Issue 11, pp 1629–1635 | Cite as

Influence of the Silicon Dioxide Layer Thickness on Electroforming in Open TiN–SiO2–W Sandwiches

  • V. M. MordvintsevEmail author
  • S. E. Kudryavtsev
  • V. L. Levin
SOLID STATE ELECTRONICS
  • 11 Downloads

Abstract

Based on experimental data for electroforming in open TiN–SiO2–W sandwich structures (the end face of d = 10–30-nm-thick SiO2 films exposed to vacuum served as an insulating trench), it has been shown that the voltage at which conducive particles (CPs) arise (i.e., the electroforming onset voltage) changes insignificantly with decreasing thickness d. The electroforming process is initiated by a voltage with a threshold near 8.5 V, rather than by electric field strength. This value far exceeds the CP formation voltage threshold when already formed structures switch over (3–4 V). This points to the existence of two nonthermal mechanisms that activate CP formation under electron impact. In the case of electroforming, this is dissociative attachment of an electron, which causes an oxygen atom to escape into vacuum and, hence, an increase in the silicon atom concentration on the surface of the insulating trench. In the case of switching, this is a change in the molecular state of oxygen (or hydrogen) on the surface.

Notes

REFERENCES

  1. 1.
    G. Dearnaley, A. M. Stoneham, and D. V. Morgan, Rep. Prog. Phys. 33, 1129 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    H. Pagnia and N. Sotnik, Phys. Status Solidi A 108 (11), 11 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    V. M. Mordvintsev, S. E. Kudryavtsev, and V. L. Levin, Nanotechnol. Russ. 4, 121 (2009).CrossRefGoogle Scholar
  4. 4.
    Y. F. Chang, B. Fowler, F. Zhou, Y.-C. Chen, and J. C. Lee, Appl. Phys. Lett. 108, 033504 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    V. M. Mordvintsev and V. L. Levin, Tech. Phys. 44, 1322 (1999).CrossRefGoogle Scholar
  6. 6.
    V. M. Mordvintsev, S. E. Kudryavtsev, and V. L. Levin, in Silicon Nanostructures. Physics. Technology. Modeling, Ed. by V. I. Rudakov (INDIGO, Yaroslavl, 2014), p. 493.Google Scholar
  7. 7.
    V. M. Mordvintsev, S. E. Kudryavtsev, and V. L. Levin, Nanotechnol. Russ. 4, 129 (2009).CrossRefGoogle Scholar
  8. 8.
    V. M. Mordvintsev and S. E. Kudryavtsev, Russ. Microelectron. 42, 68 (2013).CrossRefGoogle Scholar
  9. 9.
    V. M. Mordvintsev and S. E. Kudryavtsev, Russ. Microelectron. 46, 243 (2017).CrossRefGoogle Scholar
  10. 10.
    V. M. Mordvintsev, V. V. Naumov, and S. G. Simakin, Russ. Microelectron. 45, 242 (2016).CrossRefGoogle Scholar
  11. 11.
    P. S. Zakharov, Candidate’s Dissertation in Mathematics and Physics (Moscow Inst. of Physics and Technology, Moscow, 2016).Google Scholar
  12. 12.
    A. V. Eletskii and B. M. Smirnov, Sov. Phys. Usp. 28, 956 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Mordvintsev
    • 1
    Email author
  • S. E. Kudryavtsev
    • 1
  • V. L. Levin
    • 1
  1. 1.Institute of Physics and Technology (Yaroslavl Branch), Russian Academy of SciencesYaroslavlRussia

Personalised recommendations