Skip to main content
Log in

Nonuniform Elastic Strain and Memristive Effect in Aligned Carbon Nanotubes

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The simulation results of elastic strain of an aligned carbon nanotube under the influence of a local external electric field are reported. A method for inducing controllable nonuniform elastic strain in a vertically aligned carbon nanotube, which is a prerequisite for a reproducible memristive effect in such nanotubes, is developed. The passage of current through elastically strained carbon nanotubes with aspect ratios from 20 to 30 is examined experimentally. It is demonstrated that the resistance of a nanotube with its relative strain changing from 0.02% to 0.07% increases by a factor of 5.2 in the high-resistance state due to an increase in the strength of the internal electric field, thus resulting in a stronger memristive effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng, Nanoscale Res. Lett. 9, 1 (2014).

    Article  ADS  Google Scholar 

  2. J. G. Zhu, Proc. IEEE 96, 1786 (2008).

    Article  Google Scholar 

  3. S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-Ch. Chen, R. M. Shelby, M. Salinga, D. Krebs, Sh.-H. Chen, H.-L. Lung, and Ch. H. Lam, IBM J. Res. Dev. 52, 465 (2008).

    Article  Google Scholar 

  4. H. Akinaga and H. Shima, Proc. IEEE 98, 2237 (2010).

    Article  Google Scholar 

  5. L. O. Chua, Proc. IEEE 91, 1830 (2003).

    Article  Google Scholar 

  6. J. J. Yang, D. B. Strukov, and D. R. Stewart, Nat. Nanotechnol. 8, 13 (2013).

    Article  ADS  Google Scholar 

  7. L. O. Chua, Appl. Phys. A 102, 765 (2011).

    Article  ADS  Google Scholar 

  8. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).

    Article  ADS  Google Scholar 

  9. T. Rueckes,   K. Kim,   E. Joselevich,   G. Y. Tseng, C.-L. Cheung, and C. M. Lieber, Science 289, 94 (2000).

    Article  ADS  Google Scholar 

  10. Z. Ren, Y. Lan, and Y. Wang, Aligned Carbon Nanotubes: Physics, Concepts, Fabrication and Devices (Springer, Berlin, 2013).

    Book  Google Scholar 

  11. M. V. Il’ina, O. I. Il’in, Yu. F. Blinov, V. A. Smirnov, A. S. Kolomiytsev, A. A. Fedotov, B. G. Konoplev, and O. A. Ageev, Carbon 123, 514 (2017).

    Article  Google Scholar 

  12. O. A. Ageev, Yu. F. Blinov, O. I. Il’in, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Phys. Solid State 57, 825 (2015).

    Article  ADS  Google Scholar 

  13. A. D. Bartolomeo, A. Scarfato, F. Giubileo, F. Bobba, M. Biasiucci, A. M. Cucolo, S. Santucci, and M. Passacantando, Carbon 45, 2957 (2007).

    Article  Google Scholar 

  14. D. V. Gorodetskiy, A. V. Gusel’nikov, S. N. Shevchenko, M. A. Kanygin, A. V. Okotrub, and Y. V. Pershin, J. Nanophotonics 10, 012524 (2016).

    Article  ADS  Google Scholar 

  15. Y. Zuo, Y. Ren, Z. Wang, X. Han, and L. Xi, Org. Electron. 14, 2306 (2013).

    Article  Google Scholar 

  16. Sh. Parveen, S. Husain, A. Kumar, J. Ali, H. Husain, and M. Husain, ISRN Nanomater. 2012, 971854 (2012).

    Article  Google Scholar 

  17. O. A. Ageev, Yu. F. Blinov, O. I. Il’in, A. S. Kolomii-tsev, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Tech. Phys. 58, 1831 (2013).

    Article  Google Scholar 

  18. B. Liu, H. Jiang, H. T. Johnson, and Y. Huang, J. Mech Phys. Solids 52, 1 (2004).

    Article  ADS  Google Scholar 

  19. Y. Nakayama, A. Nagataki, O. Suekane, X. Cai, and S. Akita, Jpn. J. Appl. Phys. 44, 720 (2005).

    Article  ADS  Google Scholar 

  20. M. A. Zelisko, Y. B. Hanlumyuang, S. C. Yang, Y. D. Liu, C. D. Lei, J. D. Li, P. M. C. Ajayan, and P. Sharma, Nat. Commun. 5, 1 (2014).

    Article  Google Scholar 

  21. S. Chandratre and P. Sharma, Appl. Phys. Lett. 100, 023114 (2012).

    Article  ADS  Google Scholar 

  22. R. Maranganti, N. D. Sharma, and P. Sharma, Phys. Rev. B 74, 014110 (2006).

    Article  ADS  Google Scholar 

  23. W. Lu, D. Wang, and L. Chen, Nano Lett. 7, 2729 (2007).

    Article  ADS  Google Scholar 

  24. B. Kozinsky and N. Marzari, Phys. Rev. Lett. 96, 166801 (2006).

    Article  ADS  Google Scholar 

  25. A. Mayer, Phys. Rev. B 71, 235333 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Dietzel, S. Marsaudon, J. P. Aime, C. V. Nguyen, and G. Couturier, Phys. Rev. B 72, 035445 (2005).

    Article  ADS  Google Scholar 

  27. O. A. Ageev, Yu. F. Blinov, M. V. Il’ina, O. I. Il’in, V. A. Smirnov, and O. G. Tsukanova, Phys. Solid State 58, 309 (2016).

    Article  ADS  Google Scholar 

  28. O. A. Ageev, S. V. Balakirev, Al. V. Bykov, E. Yu. Gusev, A. A. Fedotov, J. Y. Jityaeva, O. I. Il’in, M. V. Il’ina, A. S. Kolomiytsev, B. G. Konoplev, S. U. Krasnoborodko, V. V. Polyakov, V. A. Smirnov, M. S. Solodovnik, and E. G. Zamburg, in Advanced Materials – Manufacturing, Physics, Mechanics and Applications, Ed. by I.  A.  Parinov, Sh.-H. Chang, and V. Yu. Topolov (Springer, 2016), p. 563.

    Google Scholar 

  29. O. A. Ageev, O. I. Il’in, A. S. Kolomiitsev, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Nanotechnol. Russ. 7, 47 (2012).

    Article  Google Scholar 

  30. J. Maultzsch, S. Reich, and C. Thomsen, Phys. Rev. B 65, 233402 (2002).

    Article  ADS  Google Scholar 

  31. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus, Adv. Phys. 60, 413 (2011).

    Article  ADS  Google Scholar 

  32. B. G. Konoplev, O. A. Ageev, V. A. Smirnov, A. S. Kolomiitsev, and N. I. Serbu, Russ. Microelectron. 41, 41 (2012).

    Article  Google Scholar 

  33. L. Liu, G. Cao, and X. Chen, J. Nanomater. 2008, 271763 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Il’ina or O. A. Ageev.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ina, M.V., Il’in, O.I., Blinov, Y.F. et al. Nonuniform Elastic Strain and Memristive Effect in Aligned Carbon Nanotubes. Tech. Phys. 63, 1672–1677 (2018). https://doi.org/10.1134/S1063784218110129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218110129

Keywords

Navigation