Skip to main content
Log in

The Influence of Film Thickness on Annealing-Induced Grain Growth in Pt Films

  • Physical Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Pt films with thickness h = 20–100 nm deposited on oxidized с-Si(100) substrate have been subjected to vacuum annealing at 500°C for 1 h, which resulted in recrystallization and growth of grains. Simultaneously with the normal growth of grains, abnormal grain growth has been observed, as a result of which the grains have separated in normal and secondary grains. For h = 20–40 nm, the secondary grains become much larger than the normal ones and the grain lateral size distribution therefore becomes bimodal. It has been shown that the abnormal grain growth rate increases with decreasing h, whereas the normal grain growth rate is independent of h. From the Pt(111) and Pt(222) X-ray diffraction peaks analysis it follows that the mean size D of coherently diffracting domains increases as a result of annealing. In the annealed films, D sublinearly grows with h, whereas in the as-prepared films, D grows linearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morcoc, H. Lee, and Y.-S. Kang, Crit. Rev. Solid State Mater. Sci. 32, 111 (2007). doi 10.1080/10408430701707347

    Article  ADS  Google Scholar 

  2. K. A. Vorotilov, O. M. Zhigalina, V. A. Vasil’ev, and A. S. Sigov, Phys. Solid State 51, 1337 (2009). doi 10.1134/S106378340907004X

    Article  ADS  Google Scholar 

  3. J. Hong, H. W. Song, H. C. Lee, W. J. Lee, and K. No, J. Appl. Phys. 90, 1962 (2001). doi 10.1063/1.1385358

    Article  ADS  Google Scholar 

  4. M. Matsumiya, W. Shin, N. Izu, and N. Murayama, Sens. Actuators, B 93, 309 (2003). doi 10.1016/S0925-4005(03)00223-5

    Article  Google Scholar 

  5. M. Ali, V. Cimalla, V. Lebedev, H. Romanusa, V. Tilak, D. Merfeld, P. Sandvik, and O. Ambacher, Sens. Actuators, B 113, 797 (2006). doi 10.1016/j.snb.2005.03.019

    Article  Google Scholar 

  6. Z. Huang, W. Zhou, and X. Tang, Appl. Surf. Sci. 256, 2025 (2010). doi 10.1016/j.apsusc.2009.09.042

    Article  ADS  Google Scholar 

  7. D. Resnik, D. Vrtacnik, M. Mozek, B. Pecar, and S. Amon, J. Micromech. Microeng. 21, 025025 (2011). doi 10.1088/0960-1317/21/2/025025

    Article  ADS  Google Scholar 

  8. C. V. Thompson, J. Appl. Phys. 58, 763 (1985). doi 10.1063/1.336194

    Article  ADS  Google Scholar 

  9. C. C. Wong, H. I. Smith, and C. V. Thompson, Appl. Phys. Lett. 48, 335 (1986). doi 10.1063/1.96543

    Article  ADS  Google Scholar 

  10. W. Gruber, C. Baehtz, M. Horisberger, I. Ratschinski, and H. Schmidt, Appl. Surf. Sci. 368, 341 (2016). doi 10.1016/j.apsusc.2016.02.015

    Article  ADS  Google Scholar 

  11. F. Ruffino, M. G. Grimaldi, C. Bongiorno, F. Giannazzo, F. Roccaforte, V. Raineri, and C. Spinella, J. Appl. Phys. 105, 054311 (2009). doi 10.1063/1.3093681

    Article  ADS  Google Scholar 

  12. S. H. Brongersma, E. Richard, I. Vervoort, H. Bender, W. Vandervorst, S. Lagrange, G. Beyer, and K. Maex, J. Appl. Phys. 86, 3642 (1999). doi 10.1063/1.371272

    Article  ADS  Google Scholar 

  13. C. Lingk, M. E. Gross, and W. L. Brown, J. Appl. Phys. 87, 2232 (2000). doi 10.1063/1.372166

    Article  ADS  Google Scholar 

  14. Platinum, Its Alloys, and Composite Materails, Ed. by E. V. Vasil’eva (Metallurgiya, Moscow, 1980).

    Google Scholar 

  15. R. Dannenberg, E. A. Stach, J. R. Groza, and B. J. Dresser, Thin Solid Films 370, 54 (2000). doi 10.1016/S0040-6090(99)00947-5

    Article  ADS  Google Scholar 

  16. D. Briand, S. Heimgartner, M. Leboeuf, M. Dadras, and N. F. de Rooij, Mater. Res. Soc. Symp. Proc. 729, U2.5 (2002). doi 10.1557/PROC-729-U2.5

  17. C.-L. Dai, F.-Y. Xiao, C.-Y. Lee, Y.-C. Cheng, P.-Z. Chang, and S.-H. Chang, Mater. Sci. Eng., A 384, 57 (2004). doi 10.1016/j.msea.2004.05.067

    Article  Google Scholar 

  18. H. Z. Yu and C. V. Thompson, Acta Mater. 67, 189 (2014). doi 10.1016/j.actamat.2013.12.031

    Article  Google Scholar 

  19. J. H. Jeffries, J.-K. Zuo, and M. M. Craig, Phys. Rev. Lett. 76, 4931 (1996). doi 10.1103/PhysRevLett.76.4931

    Article  ADS  Google Scholar 

  20. M. C. Salvadori, L. L. Melo, M. Cattani, O. R. Monteiro, and I. G. Brown, Surf. Rev. Lett. 10, 1 (2003). doi 10.1142/S0218625X03004561

    Article  Google Scholar 

  21. M. C. Salvadori, I. G. Brown, A. R. Vaz, L. L. Melo, and M. Cattani, Phys. Rev. B 67, 153404 (2003). doi 10.1103/PhysRevB.67.153404

    Article  ADS  Google Scholar 

  22. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-ray Diffraction, and Electron Microscopy (Metallurgiya, Moscow, 1982).

    Google Scholar 

  23. W. Ruland, J. Appl. Crystallogr. 1, 90 (1968). doi 10.1107/S0021889868005066

    Article  Google Scholar 

  24. F. R. L. Schoening, Acta Crystallogr. 18, 975 (1965). doi 10.1107/S0365110X65002335

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Selyukov.

Additional information

Original Russian Text © R.V. Selyukov, V.V. Naumov, S.V. Vasilev, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 6, pp. 926–933.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selyukov, R.V., Naumov, V.V. & Vasilev, S.V. The Influence of Film Thickness on Annealing-Induced Grain Growth in Pt Films. Tech. Phys. 63, 900–907 (2018). https://doi.org/10.1134/S106378421806018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421806018X

Navigation