Technical Physics

, Volume 63, Issue 2, pp 200–205 | Cite as

Study of Diffusion Bonding of 45 Steel through the Compacted Nickel Powder Layer

  • G. M. ZeerEmail author
  • E. G. Zelenkova
  • V. I. Temnykh
  • A. M. Tokmin
  • A. A. Shubin
  • Yu. P. Koroleva
  • A. A. Mikheev
Physical Science of Materials


The microstructure of the transition zone and powder spacer, the concentration distribution of chemical elements over the width of the diffusion-bonded joint, and microhardness of 45 steel–compacted Ni powder spacer–45 steel layered composites formed by diffusion bonding have been investigated. It has been shown that the relative spacer thickness χ < 0.06 is optimal for obtaining a high-quality joint has been formed under a compacting pressure of 500 MPa. The solid-state diffusion bonding is accompanied by sintering the nickel powder spacer and the formation of the transition zone between the spacer and steel. The transition zone consists of solid solution of nickel in the α-Fe phase and ordered solid solution of iron in nickel (FeNi3).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. F. Kazakov, Diffusion Welding of Materials (Mashinostroenie, Moscow, 1976).Google Scholar
  2. 2.
    E. S. Karakozov, Pressure Metal Welding (Mashinostroenie, Moscow, 1986).Google Scholar
  3. 3.
    A. V. Lyushinskii, Diffusion Welding of Dissimilar Materials (Akademiya, Moscow, 2006).Google Scholar
  4. 4.
    G. V. Konyushkov and R. A. Musin, Special Techniques of Pressure Welding (I.P.R. Media, Saratov, 2009).Google Scholar
  5. 5.
    A. B. Bulkov, V. V. Peshkov, V. R. Petrenko, et al., Svar. Proizvod., No. 11, 18 (2011).Google Scholar
  6. 6.
    N. V. Boiko, I. A. Khazov, L. V. Selezneva, B. V. Bushmin, A. N. Semenov, G. V. Dubinin, S. N. Novozhilov, and M. I. Plyshevskii, Met. Sci. Heat Treat. 54, 483 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    G. M. Zeer, E. G. Zelenkova, O. V. Belousov, Yu. P. Koroleva, E. N. Fedorova, and A. A. Mikheev, Tech. Phys. 60, 525 (2015).CrossRefGoogle Scholar
  8. 8.
    A. V. Lyushinskii, Svarka Diagn., No. 4, 42 (2009).Google Scholar
  9. 9.
    A. Ustinov, Yu. Falchenko, T. Melnichenko, et al., J. Mater. Process. Technol. 213, 543 (2013).CrossRefGoogle Scholar
  10. 10.
    A. I. Ustinov, Yu. V. Falchenko, T. V. Melnichenko, et al., Paton Weld. J., No. 7, 3 (2015).CrossRefGoogle Scholar
  11. 11.
    A. V. Lyushinskii, E. S. Fedorova, S. V. Starovatskii, et al., Aviakosm. Priborostr., No. 6, 3 (2015).Google Scholar
  12. 12.
    K. A. Yushchenko, B. A. Zadery, A. V. Zvyagintseva, et al., Paton Weld. J., No. 11, 2 (2006).Google Scholar
  13. 13.
    J. Zhang, Q. Shen, G. Luo, et al., Mater. Des. 39, 81 (2012).CrossRefGoogle Scholar
  14. 14.
    T. Enjo, K. Ikeuchi, and N. Akikawa, J. Jpn. Weld. Soc. 51, 272 (1982).CrossRefGoogle Scholar
  15. 15.
    GOST 21318-75. Measurement of Microhardness by Scratch Diamond Instruments (Izd. Standartov, Moscow, 1988).Google Scholar
  16. 16.
    State Diagrams of Binary Metallic Systems. Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol.2.Google Scholar
  17. 17.
    G. A. Libenson, V. Yu. Lopatin, and G. V. Komaritskii, Powder Metallurgy Processes, Vol. 2: Molding and Sintering (MISIS, Moscow, 2002).Google Scholar
  18. 18.
    L. Z. Mezey and J. Giber, Jpn. J. Appl. Phys. 21, 1569 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. M. Zeer
    • 1
    Email author
  • E. G. Zelenkova
    • 1
  • V. I. Temnykh
    • 1
  • A. M. Tokmin
    • 1
  • A. A. Shubin
    • 1
  • Yu. P. Koroleva
    • 1
  • A. A. Mikheev
    • 2
  1. 1.Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Siberian State Aerospace UniversityKrasnoyarskRussia

Personalised recommendations