Advertisement

Technical Physics

, Volume 63, Issue 1, pp 78–82 | Cite as

Transformation of the Surface Structure of Marble under the Action of a Shock Wave

  • I. P. Shcherbakov
  • V. I. VettegrenEmail author
  • A. Ya. Bashkarev
  • R. I. Mamalimov
Physics of Nanostructures
  • 16 Downloads

Abstract

The structure of marble fracture fragments formed after the destruction under the action of a shock wave have been analyzed by Raman, infrared, and luminescence spectroscopic techniques. It has been found that calcite I in the surface layer of fragments with thicknesses of about 2 μm is transformed into high-pressure phase calcite III. At the same time, concentrations of Mn2+, Eu3+, and other ions decrease to about onefourth of their initial values.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Fortov, Phys.-Usp. 50, (333 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004).CrossRefGoogle Scholar
  3. 3.
    G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 57, 1818 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    G. A. Malygin, Phys. Solid State 57, 967 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    V. I. Vettegren, A. V. Voronin, V. S. Kuksenko, R. I. Mamalimov, and I. P. Shcherbakov, Phys. Solid State 56, 317 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    V. I. Vettegren, I. P. Shcherbakov, A. V. Voronin, V. S. Kuksenko, and R. I. Mamalimov, Phys. Solid State 56, 1018 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    V. I. Vettegren, I. P. Shcherbakov, V. S. Kuksenko, and R. I. Mamalimov, Phys. Solid State 56, 1828 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    V. I. Vettegren, V. S. Kuksenko, and I. P. Shcherbakov, Izv., Phys. Solid Earth 52, 754 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    I. P. Shcherbakov, V. I. Vettegren, and R. I. Mamalimov, Tech. Phys. 62, 1533 (2017).CrossRefGoogle Scholar
  10. 10.
    V. I. Vettegren, V. S. Kuksenko, I. P. Shcherbakov, and R. I. Mamalimov, Phys. Solid State 57, 2458 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    V. I. Vettegren, I. P. Shcherbakov, R. I. Mamalimov, and V. B. Kulik, Phys. Solid State 58, 699 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    L. Merrill and W. A. Bassett, Acta Crystallogr., Sect. B 31, 343 (1975).CrossRefGoogle Scholar
  13. 13.
    M. Merlini, W. A. Crichton, J. Chantel, J. Guignard, and S. Poli, Mineral. Mag. 78, 225 (2014).CrossRefGoogle Scholar
  14. 14.
    K. Catalli and Q. Williams, Am. Mineral. 90, 1679 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    K. B. Abramova, I. P. Shcherbakov, and A. I. Rusakov, Tech. Phys. 44, 259 (1999).CrossRefGoogle Scholar
  16. 16.
    A. B. Kuzmenko, Rev. Sci. Instrum. 76, 083108 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    E. Wolf and M. Born, Principles of Optics, 2nd ed. (Pergamon, Oxford, 1964).Google Scholar
  18. 18.
    S. Gunasekaran, G. Anbalagan, and S. J. Pandi, J. Raman Spectrosc. 37, 892 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    E. Huang, C. H. Chen, T. Huang, E. H. Lin, and J.-A. Xu, Am. Mineral. 86, 473 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    P. Richet, B. O. Mysen, and J. Ingrin, Phys. Chem. Miner. 25, 401 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    S. Gunasekaran, G. Anbalagan, and S. J. Pandi, J. Raman Spectrosc. 37, 892 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    D. Lou, F. Sun, and L. Li, Chin. Opt. Lett. 5, 370 (2007).ADSGoogle Scholar
  23. 23.
    L. V. Y. Noël, R. Orlando, C. M. Zicovich-Wilson, M. Ferrero, and R. Dovesi, Theor. Chem. Acc. 117, 991 (2007).CrossRefGoogle Scholar
  24. 24.
    K. Catalli and Q. Williams, Am. Mineral. 90, 1679 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    O. Madelung, Festkörpertheorie (Springer, Berlin, 1972).Google Scholar
  26. 26.
    Q. Williams, B. Collerson, and E. Knittle, Am. Mineral. 77, (1158 (1992).Google Scholar
  27. 27.
    J. Reeder, M. Nugent, C. D. Tait, D. E. Morris, S. M. Heald, K. M. Beck, W. P. Hess, and A. Lanzirotti, Geochim. Cosmochim. Acta 65, 3491 (2001).ADSCrossRefGoogle Scholar
  28. 28.
    K. Polikreti and C. Christofides, Appl. Phys. A 90, 285 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    D. Habermann, R. Neuser, and D. K. Richter, Sediment. Geol. 116, 13 (1998).ADSCrossRefGoogle Scholar
  30. 30.
    K. Polikreti and C. Christofides, Appl. Phys. A 90, 285 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    T. Calderon, M. Aguilar, F. Jaque, and R. Coyll, J. Phys. C: Solid State Phys. 17, 2027 (1984).ADSCrossRefGoogle Scholar
  32. 32.
    J. Reeder, M. Nugent, C. D. Tait, D. E. Morris, S. M. Heald, K. M. Beck, W. P. Hess, and A. Lanzirotti, Geochim. Cosmochim. Acta 65, 3491 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. P. Shcherbakov
    • 1
  • V. I. Vettegren
    • 1
    Email author
  • A. Ya. Bashkarev
    • 2
  • R. I. Mamalimov
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations