Technical Physics

, Volume 62, Issue 9, pp 1385–1392 | Cite as

Influence of barrier effects at interfaces on dynamic scattering of light in a nematic liquid crystal

  • L. P. Amosova
  • D. S. Boikov
  • D. P. Shcherbinin
Physical Science of Materials
  • 14 Downloads

Abstract

The intensity of light dynamic scattering by a nematic liquid crystal with negative dielectric anisotropy (ZhK-440) as a function of the constant electric field strength has been studied under different interfacial conditions. It has been shown that potential barriers that arise at the interfaces not only influence the scattering intensity, but may also radically change the form of the dependence; i.e., the curves of optical transmission in the direction of the incident beam may have a minimum under certain field strengths. At higher strengths, the cells become totally transparent again. This anomalous behavior of the transmission curve is associated with the fact that the conductivity of the cells drops below a critical value with growing field strength, as the resistance of the space charge region at the inversely biased junction of the extraction electrode rises. In addition, it has been shown that the high resistance of the cells at low voltages may be attributed not only to a low concentration of impurities in the liquid crystal, but also to a low emissivity of the injecting electrode and a weak electron affinity of the extraction electrode.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Blinov, Sov. Phys. Usp. 18, 658 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    L. M. Blinov, Liquid Crystals: Structure and Properties (LIBROKOM, Moscow, 2013).Google Scholar
  3. 3.
    P. G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).MATHGoogle Scholar
  4. 4.
    A. Baise, I. Teucher, and M. Labes, Appl. Phys. Lett. 21, 142 (1972).ADSCrossRefGoogle Scholar
  5. 5.
    V. I. Khataevich, S. A. Pikin, N. A. Tikhomirova, and A. Kh. Zeinally, JETP Lett. 28, 11 (1978).ADSGoogle Scholar
  6. 6.
    S. Barret, F. Gaspard, R. Herino, and F. Mondon, J. Appl. Phys. 47, 2375 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    S. Barret, F. Gaspard, R. Herino, and F. Mondon, J. Appl. Phys. 47, 2378 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    R. Héerino, J. Appl. Phys. 52, 3690 (1981).ADSCrossRefGoogle Scholar
  9. 9.
    A. P. Fedoryako, A. I. Kocherzhin, M. P. Kukhtin, and E. I. Chernyakov, Radiotekhnika (Kharkiv) 175, 224 (2013).Google Scholar
  10. 10.
    V. A. Delev, O. A. Scaldin, E. S. Batyrshin, and E. G. Axelrod, Tech. Phys. 56, 8 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Yu. Val’kov, V. P. Romanov, and A. N. Shalaginov, Phys.-Usp. 37, 139 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    Li Bing-Xiang, V. Borshch, S. V. Shiyanovskii, L. Shao-Bin, and O. D. Lavrentovich, Appl. Phys. Lett. 104, 201105 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    E. S. Batyrshin, A. P. Krekhov, O. A. Skaldin, and V. A. Delev, Tech. Phys. Lett. 40, 1095 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    M. W. Geis, P. J. Bos, V. Liberman, and M. Rothschild, Opt. Express 24, 13812 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    E. A. Konshina, Amorphous Hydrogenated Carbon and Its Application in Optical Devices (Univ. ITMO, St. Petersburg, 2010).Google Scholar
  16. 16.
    M. M. Labes, U.S. Patent No. 3 932 298 (July 19, 1973).Google Scholar
  17. 17.
    R. K. Yafarov, Tech. Phys. 51, 40 (2006).CrossRefGoogle Scholar
  18. 18.
    Diamonds in Electronic Engineering, Ed. by V. B. Kvaskov (Energoatomizdat, Moscow, 1990).Google Scholar
  19. 19.
    A. N. Obraztsov, I. Yu. Pavlovskii, and A. P. Volkov, Tech. Phys. 46, 1437 (2001).CrossRefGoogle Scholar
  20. 20.
    O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskii, L. V. Sokolov, A. I. Nikiforov, A. I. Yakimov, and B. Voigtländer, Semiconductors 34, 1229 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    E. A. Konshina, M. A. Fedorov, L. P. Amosova, and Yu. M. Voronin, Tech. Phys. 53, 211 (2008).CrossRefGoogle Scholar
  22. 22.
    L. P. Amosova and A. N. Chaika, Tech. Phys. 55, 1517 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. P. Amosova
    • 1
  • D. S. Boikov
    • 1
  • D. P. Shcherbinin
    • 1
  1. 1.St. Petersburg National University of Information Technologies, Mechanics, and Optics (ITMO)St. PetersburgRussia

Personalised recommendations