Technical Physics

, Volume 62, Issue 4, pp 625–632 | Cite as

Linear ion trap with a deterministic voltage of the general form

  • Yu. V. Rozhdestvenskii
  • S. S. Rudyi
Electrophysics, Electron and Ion Beams, Physics of Accelerators


An analysis of the stability zones of a linear ion trap in the case of applying the voltage of the common form to the electrodes has been presented. The possibility of the localization of ions for specific types of periodic (but not harmonic) signals has been investigated. It has been shown that, when changing the types of temporal functions of the applied voltage the control by both trapping and dynamics of ions in a linear radiofrequency (RF) trap occurs, while preserving its design. The latest developments present new possibilities of implementing devices based on single ions, e.g., quantum frequency standards and quantum processors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. Wang, H. Chen, J. Lee, and P. T. A. Reilly, Int. J. Mass Spectrom. 328–329, 28 (2012).CrossRefGoogle Scholar
  2. 2.
    X. Zhao and P. S. Krstic, Nanotechnol. 19, 195702 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    J. L. P. Benesch, B. T. Ruotolo, D. A. Simmons, and C. V. Robinson, Chem. Rev. 107, 3544 (2007).CrossRefGoogle Scholar
  4. 4.
    R. E. March and J. F. J. Todd, Quadrupole Ion Trap Mass Spectrometry, Ed. by J. D. Winefordner (Wiley Online, 2005), Vol. 165.Google Scholar
  5. 5.
    K. Blaum, Phys. Rep. 425, 1 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    W. Paul, Nobel Lecture “Electromagnetic traps for charged and neutral particles” (December 8, 1989), Usp. Fiz. Nauk 160 (12), 109 (1990).Google Scholar
  7. 7.
    T. H. Kim, P. F. Herskind, T. Kim, J. Kim, and I. L. Chuang, Phys. Rev. A 82, 043412 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    J. M. Amini, J. Britton, D. Leibfried, and D. J. Wineland, Microfabricated Chip Traps for Ions Atom Chips, Ed. by J. Reichel and V. Vuletic (Wiley,Weinheim, 2011).Google Scholar
  9. 9.
    M. J. Madsen and C. H. Gorman, Phys. Rev. A 82, 043423 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Xiao, Z. Ding, C. Xu, X. Dai, X. Fang, and C. F. Ding, Anal. Chem. 86, 5733 (2014).CrossRefGoogle Scholar
  11. 11.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics, 4th ed. (Nauka, Moscow, 1988, Pergamon, New York, 1988).Google Scholar
  12. 12.
    A. A. Abramov and S. V. Kurochkin, Zh. Vychisl. Mat. Mat. Fiz. 47, 414 (2007).Google Scholar
  13. 13.
    S. S. Chaharborj, S. M. S. Kiai, I. Fudziaha, and Z. A. Majida, Eur._J. Mass Spectrom. 18, 431 (2012).CrossRefGoogle Scholar
  14. 14.
    M. U. Sudakov, N. V. Konenkov, D. J. Douglas, and T. A. Glebova, J. Am. Soc. Mass Spectrom. 11, 11 (2000).CrossRefGoogle Scholar
  15. 15.
    X. Zhao, V. L. Ryjkov, and H. A. Schuessler, Phys. Rev. A 66, 063414 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    S. S. Rudiy and Yu. V. Rozhdestvenskii, Tech. Phys. Lett. 42, 167 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.ITMO National Research UniversitySt. PetersburgRussia

Personalised recommendations