Technical Physics

, Volume 61, Issue 7, pp 1039–1045 | Cite as

Electric method for studying reorientation dynamics of the nematic liquid crystal director

  • D. P. Shcherbinin
  • D. A. Vakulin
  • E. A. Konshina
Physical Science of Materials

Abstract

A method has been proposed for studying the reorientation dynamics of the nematic liquid crystal (NLC) director using the results of measurements of the electric response of an LC cell. The simulation of the time dependences of the current in an LC cell with a homogeneous orientation is carried out upon variation of the applied voltage, the initial tilt angle of the director, dielectric anisotropy, and the elasticity coefficient, as well as the dynamic viscosity, density, and ion mobility in the NLC. A comparison of the experimental and computational curves of the electric response for NLC 5CB shows their good agreement. The method makes it possible to monitor the steady-state current, the density, and the ion mobility in NLCs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Schadt, Jpn. J. Appl. Phys. 48, 03B 001(9) (2009).CrossRefGoogle Scholar
  2. 2.
    L. J. Yuan, G. Tan, D. Xu, F. Peng, A. Lorenz, and S.-T. Wu, Opt. Mater. Express 5, 1339 (2015).CrossRefGoogle Scholar
  3. 3.
    I. F. Galin and E. A. Konshina, Opt. Zh. 81 (6), 48 (2014).Google Scholar
  4. 4.
    H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, Opt. Mater. Express 5, 655 (2015).CrossRefGoogle Scholar
  5. 5.
    E. A. Konshina, M. A. Fedorov, A. E. Rybnikova, L. P. Amosova, N. L. Ivanova, M. V. Isaev, and D. S. Kostomarov, Tech. Phys. 54, 555 (2009).CrossRefGoogle Scholar
  6. 6.
    S. A. Jewell, T. S. Taphouse, and J. R. Sambles, Appl. Phys. Lett. 87, 021 106(3) (2005).CrossRefGoogle Scholar
  7. 7.
    V. N. Vasil’ev, E. A. Konshina, M. A. Fedorov, and L. P. Amosova, Tech. Phys. 55, 850 (2010).CrossRefGoogle Scholar
  8. 8.
    S.-T. Wu, J. Appl. Phys. 60, 1836 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    X. Nie, H. Xianyu, R. Lu, and T. X. Wu, J. Disp. Technol. 3, 280 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    I. F. Galin and E. A. Konshina, Opt. Zh. 78 (6), 71 (2011).Google Scholar
  11. 11.
    A. Kubono, Y. Kyokane, R. Akiyama, and K. Tanaka, Appl. Phys. 90, 5859 (2001).CrossRefGoogle Scholar
  12. 12.
    E. A. Konshina, D. A. Vakulin, N. L. Ivanova, E. O. Gavrish, and V. N. Vasil’ev, Tech. Phys. 57, 644 (2012).CrossRefGoogle Scholar
  13. 13.
    A. V. Ivanov, D. A. Vakulin, and E. A. Konshina, Opt. Zh. 81 (3), 23 (2014).Google Scholar
  14. 14.
    C.-W. Kuo, S.-C. Jeng, H.-L. Wang, and C.-C. Liao, Appl. Phys. Lett. 91, 141 103(3) (2007).Google Scholar
  15. 15.
    T. Zhang, C. Zhong, and J. Xu, Jpn. J. Appl. Phys. 48, 055 002(6) (2009).Google Scholar
  16. 16.
    R. Basu, Appl. Phys. Lett. 103, 241 906(4) (2013).CrossRefGoogle Scholar
  17. 17.
    R. Basu and A. Garvey, Appl. Phys. Lett. 105, 151 905 (2014).Google Scholar
  18. 18.
    P. Nayek, S. Karan, S. Kundu, S. H. Lee, S. D. Gupta, S. K. Roy, and S. K. Roy, J. Phys. D: Appl. Phys. 45, 235 303(9) (2012).CrossRefGoogle Scholar
  19. 19.
    E. A. Konshina, I. F. Galin, D. P. Shcherbinin, and E. O. Gavrish, Liq. Cryst. 41, 1229 (2014).CrossRefGoogle Scholar
  20. 20.
    R. James, G. Stojmenovik, C. Desimpel, S. Vermael, F. A. Fernandez, S. E. Day, and K. Neyts, J. Disp. Technol. 2, 237 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    M. Mizusaki, T. Miyashita, T. Uchida, Y. Yamada, Y. Ishii, and S. Shigeaki Mizushima, J. Appl. Phys. 102, 014 904(6) (2007).CrossRefGoogle Scholar
  22. 22.
    H. Y. Chen, K. X. Yang, and Z. Y. Lin, J. Phys. D: Appl. Phys. 43, 315 103(5) (2010).Google Scholar
  23. 23.
    I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor, London, 2004).Google Scholar
  24. 24.
    C. W. Oseen, Trans. Faraday Soc. 29, 883 (1933).CrossRefGoogle Scholar
  25. 25.
    F. C. Frank, Discuss. Faraday Soc. 25, 19 (1958).CrossRefGoogle Scholar
  26. 26.
    F. M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968).MathSciNetCrossRefGoogle Scholar
  27. 27.
    M. A. Zelikman and E. D. Eidel’man, Tech. Phys. Lett. 41, 614 (2015).CrossRefGoogle Scholar
  28. 28.
    M. I. Barnik, L. M. Blinov, M. F. Grebenkin, and A. N. Trufanov, Mol. Cryst. Liq. Cryst. 37, 47 (1976).CrossRefGoogle Scholar
  29. 29.
    M. I. Barnik, L. M. Blinov, M. F. Grebenkin, S. A. Pikin, and V. G. Chigrinov, Phys. Lett. A 51 (3), 175 (1975).ADSCrossRefGoogle Scholar
  30. 30.
    E. I. Rjumtsev and S. G. Polushin, Liq. Cryst. 13, 623 (1993).CrossRefGoogle Scholar
  31. 31.
    D. P. Shcherbinin, E. A. Konshina, and D. E. Solodkov, Tech. Phys. Lett. 41, 781 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    A. V. Zakharov, M. N. TSvetkova, and V. G. Korsakov, Phys. Solid State 44, 1795 (2002).ADSCrossRefGoogle Scholar
  33. 33.
    R. Basu and G. S. Iannacchione, Phys. Rev. E 80, 010 701(4) (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. P. Shcherbinin
    • 1
  • D. A. Vakulin
    • 1
  • E. A. Konshina
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations