Technical Physics

, Volume 61, Issue 3, pp 342–348 | Cite as

Elementary processes during collisions of ions with tryptophan molecules

  • V. V. Afrosimov
  • A. A. BasalaevEmail author
  • V. V. Kuz’michev
  • M. N. Panov
  • O. V. Smirnov
Atomic and Molecular Physics


The relative cross sections of elementary processes occurring in single collisions of tryptophan molecules in the gaseous phase with He2+ ions with energy 4 keV/u are measured using time-of-flight mass spectrometry for studying the mechanism of radiation damage of amino acid molecules. The fragmentation channels for intermediate singly and doubly charged tryptophan molecular ions formed during one-electron capture, two-electron capture, and electron capture with ionization are investigated. Significant difference is observed in the mass spectra of fragmentation of intermediate doubly charged ions formed during the capture with ionization and double capture, which is associated with different energies of excitation of {C11H12N2O2}2+* ions.


Tryptophan Elementary Process Ionization Cross Section Fragmentation Channel Aliphatic Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. Akopyan and Yu. V. Loginov, High-Energy Chem. 1 2, 97 (1967).Google Scholar
  2. 2.
    P. H. Cannington and N. S. Ham, J. Electron Spectrosc. Relat. Phenom. 32, 139 (1983).CrossRefGoogle Scholar
  3. 3.
    O. Plekan, V. Feyer, R. Richter, M. Coreno, and K. C. Prince, Mol. Phys. 106 (9–10), 1143 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    K. R. Wilson, M. Jimenez-Cruz, C. Nicolas, L. Belau, S. R. Leone, and M. Ahmed, J. Phys. Chem. A 110, 2106 (2006).CrossRefGoogle Scholar
  5. 5.
    T. R. Rizzo, Y. D. Park, L. Peteanu, and D. H. Levy, J. Chem. Phys. 83, 4819 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    T. R. Rizzo, Y. D. Park, L. A. Peteanu, and D. H. Levy, J. Chem. Phys. 84, 2534 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    J. Grotemeyer and E. W. Schlag, Acc. Chem. Res. 22, 399 (1989).CrossRefGoogle Scholar
  8. 8.
    C.-M. Tseng, Y. A. Dyakov, H. C. Huang, K. Yu. Huang, Y. T. Lee, C.-K. Ni, and Su-Yu. Chiang, J. Chem. Phys. 133, 074 307 (2010).CrossRefGoogle Scholar
  9. 9.
    V. A. Litvinov, V. T. Koppe, Yu. E. Logachev, and V. V. Bobkov, Izv. Akad. Nauk SSSR, Ser. Fiz. 74 2, 203 (2010).Google Scholar
  10. 10.
    Y. Zubavichus, M. Zharnikov, A. Shaporenko, O. Fuchs, L. Weinhardt, C. Heske, E. Umbach, J. D. Denlinger, and M. Grunze, J. Phys. Chem. A 108, 4557 (2004).CrossRefGoogle Scholar
  11. 11.
    V. S. Vukstich, L. G. Romanova, I. G. Megela, and A. V. Snegurskii, Tech. Phys. Lett. 40, 263 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    S. Bari, P. Sobocinski, J. Postma, F. Alvarado, R. Hoekstra, V. Bernigaud, B. Manil, J. Rangama, B. Huber, and T. Schlathölter, J. Chem. Phys. 128, 074 306 (2008).CrossRefGoogle Scholar
  13. 13.
    S. Bari, F. Alvarado, J. Postma, P. Sobocinski, R. Hoekstra, and T. Schlatholter, Eur. Phys. J. D 51, 81 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    S. Maclot, M. Capron, R. Maisonny, A. Lawicki, A. Méry, J. Rangama, J.-Y. Chesnel, S. Bari, R. Hoekstra, T. Schlatholter, B. Manil, L. Adoui, P. Rousseau, and B. A. Huber, Chem. Phys. Chem. 12, 930 (2011).Google Scholar
  15. 15.
    M. Capron, S. Díaz-Tendero, S. Maclot, A. Domaracka, E. Lattouf, A. Lawicki, R. Maisonny, J.-Y. Chesnel, A. Méry, J- C. Poully, J. Rangama, L. Adoui, F. Martín, M. Alcamí, P. Rousseau, and B. A. Huber, Chem. Eur. J. 18, 9321 (2012).CrossRefGoogle Scholar
  16. 16.
    V. V. Afrosimov, A. A. Basalaev, Yu. G. Morozov, M. N. Panov, O. V. Smirnov, and E. A. Tropp, Tech. Phys. 58, 1243 (2013).CrossRefGoogle Scholar
  17. 17.
    O. V. Smirnov, A. A. Basalaev, V. M. Boitsov, S. Yu. Vyaz’min, A. L. Orbeli, and M. V. Dubina, Tech. Phys. 59, 1698 (2014).CrossRefGoogle Scholar
  18. 18.
    Q. Zhan, S. J. Wright, and R. Zenobi, J. Am. Soc. Mass Spectrom. 8, 525 (1997).CrossRefGoogle Scholar
  19. 19.
    F. Huisken, G. Rouillé, M. Arold, A. Staicu, and Th. Henning, AIP Conf. Proc. 1084, 539 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    NIST Chemistry WebBook. http://webbooknist. gov/chemistryGoogle Scholar
  21. 21.
    NIST Mass Spectral Search Program. http://chemdata. nistgovGoogle Scholar
  22. 22.
    H.-W. Jochims, M. Schwell, J.-L. Chotin, M. Clemino, F. Dulieu, H. Baumgärtel, and S. Leach, Chem. Phys. 298, 279 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    A. Salop and R. E. Olson, Phys. Rev. A 13, 1312 (1976).ADSCrossRefGoogle Scholar
  24. 24.
    D. Dehareng and G. Dive, Int. J. Mol. Sci. 5, 301 (2004).CrossRefGoogle Scholar
  25. 25.
    NIST Atomic Spectra Database. http://wwwnistgov/ pml/data/asdcfmGoogle Scholar
  26. 26.
    R. K. Janev and L. P. Presnyakov, Phys. Rep. 70, 1 (1981).ADSCrossRefGoogle Scholar
  27. 27.
    S. Campbell, J. L. Beauchamp, M. Rempe, and D. L. Lichtenberger, Int. J. Mass Spectrom. Ion Processes 117, 83 (1992).ADSCrossRefGoogle Scholar
  28. 28.
    T. Osipov, C. L. Cocke, M. H. Prior, A. Landers, Th. Weber, O. Jagutzki, L. Schmidt, H. Schmidt-Böcking, and R. Dörner, Phys. Rev. Lett. 90, 233 002 (2003).CrossRefGoogle Scholar
  29. 29.
    S. Tobita, S. Leach, H. W. Jochims, E. Rühl, E. Illenberger, and H. Baumgartel, Can. J. Phys. 72, 1060 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. V. Afrosimov
    • 1
  • A. A. Basalaev
    • 1
    Email author
  • V. V. Kuz’michev
    • 1
    • 2
  • M. N. Panov
    • 1
  • O. V. Smirnov
    • 1
    • 3
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.St. Petersburg Academic University, Nanotechnology Research and Education Center, Russian Academy of ScienceSt. PetersburgRussia

Personalised recommendations