Advertisement

Technical Physics

, Volume 61, Issue 2, pp 227–232 | Cite as

Fractal properties of aggregates of metal nanoclusters on solid surface

  • V. M. Samsonov
  • Yu. V. Kuznetsova
  • E. V. D’yakova
Physical Science of Materials

Abstract

AFM images are used to determine and analyze fractal characteristics (cluster fraction dimension and lacunarity) of aggregates of Au and Ag nanoclusters on metal films of the same metal produced with the aid of thermal vacuum deposition on mica surface. A fractal dimension of 1.6 that corresponds to typical samples with relatively uniform distribution of nanoclusters on the film surface is in agreement with the mean value calculated from experimental data of Belko et al., who studied the fractal dimension of Au nanoclusters on a different dielectric (quartz) surface. When a compact single aggregate of Au nanoclusters is formed on a certain active center or defect, the fractal cluster dimension decreases to 1.4. The experimental data are compared with the results of existing theoretical models of association of nanoclusters in 2D systems.

Keywords

Fractal Dimension Cluster Dimension Dielectric Substrate Mica Surface Fractal Aggregate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benoit B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).MATHGoogle Scholar
  2. 2.
    J. Feder, Fractals (Plenum, New York, 1988).CrossRefMATHGoogle Scholar
  3. 3.
    Fractals in Physics, Edby L. Pietronero and E. Tosatti (North-Holland, Amsterdam–Oxford–New York, 1982).Google Scholar
  4. 4.
    B. M. Smirnov, Sov. Phys. Usp. 29, 481 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    D. A. Weitz and M. Oliveria, Phys. Rev. Lett. 52, 1433 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    V. I. Roldugin, Usp. Khim. 72, 931 (2003).Google Scholar
  7. 7.
    A. V. Belko, A. V. Nikitin, N. D. Strekal’, and A. E. German, Poverkhnost’: Rentgen. Sinkhrotron. Neitron. Issled., No. 5, 11 (2009).Google Scholar
  8. 8.
    T. Yu. Zykov, N. Yu. Sdobnyakov, V. M. Samsonov, et al., Kondens. Sredy Mezhfaznye Granitsy 11, 309 (2009).Google Scholar
  9. 9.
    Giant Raman Scattering, Ed. by R. Cheng and T. M. Furtak (Wiley, London, 1980).Google Scholar
  10. 10.
    V. M. Shalaev and M. I. Shtokman, Sov. Phys. JETP 65, 287 (1987).Google Scholar
  11. 11.
    V. A. Markel, L. S. Myratov, M. I. Stockman, and T. F. George, Phys. Rev. B 43, 8183 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    V. M. Shalaev, Phys. Rep. 272, 61 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. M. Samsonov
    • 1
  • Yu. V. Kuznetsova
    • 1
  • E. V. D’yakova
    • 1
  1. 1.Tver State UniversityTverRussia

Personalised recommendations