Technical Physics

, Volume 60, Issue 10, pp 1519–1524 | Cite as

Radiation Resistance of high-entropy nanostructured (Ti, Hf, Zr, V, Nb)N coatings

  • F. F. Komarov
  • A. D. Pogrebnyak
  • S. V. Konstantinov
Physics of Nanostructures

Abstract

The influence of high-fluence ion irradiation of nanostructured (Ti, Hf, Zr, V, Nb)N coatings is revealed for the first time. The energy of irradiating helium ions is equal to 500 keV, and their fluence falls into the interval 5 × 1016–3 × 1017 ions/cm2. The performance of the coatings in a nuclear reactor is simulated by conducting post-irradiation thermal annealing at 773 K for 15 min. The elemental composition, structure, morphology, and strength properties of the (Ti, Hf, Zr, V, Nb)N coatings are studied before and after irradiation. No considerable structural and phase modifications in the coatings are found after irradiation, except for the fact that crystallites in the coatings drastically reduce in size to less than 10 nm. Nor does the atomic composition of the coatings change. It is shown that the microhardness of the coatings depends on the fluence of irradiating ions nonlinearly. It can be argued that the (Ti, Hf, Zr, V, Nb)N coatings are radiationresistant and hence promising for claddings of fuel elements in nuclear reactors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Pogrebnyak, A. A. Drobyshevskaya, V. M. Beresnev, M. K. Kylyshkanov, T. V. Kirik, S. N. Dub, F. F. Komarov, A. P. Shipilenko, and Yu. Zh. Tuleushev, Tech. Phys. 56, 1023 (2011).CrossRefGoogle Scholar
  2. 2.
    A. D. Pogrebnyak, A. P. Shpak, V. M. Beresnev, G. V. Kirik, D. A. Kolesnikov, F. F. Komarov, P. Konarskii, N. A. Makhmudov, M. V. Kaverin, and V. V. Grudnitskii, Tech. Phys. Lett. 37, 636 (2011).CrossRefGoogle Scholar
  3. 3.
    R. Krause-Rechberg, A. D. Pogrebnjak, V. N. Borisyuk, M. V. Kaverin, A. G. Ponomarev, M. A. Belokur, K. Yoshi, Y. Takeda, V. M. Beresnev, and O. V. Sobol’, Phys. Met. Metallogr. 114, 672 (2013).CrossRefADSGoogle Scholar
  4. 4.
    S.-Ch. Liang, Z.-Ch. Chang, D.-Ch. Tsai, Y.-Ch. Lin, H.-Ch. Sung, M.-J. Deng, and F.-S. Shieu, Appl. Surf. Sci. 257, 7709 (2011).CrossRefADSGoogle Scholar
  5. 5.
    J.-W. Yeh, Y.-L. Chen, S.-J. Lin, and S. K. Chen, Mater. Sci. Forum. 560, 1 (2007).CrossRefGoogle Scholar
  6. 6.
    S.-Y. Lin, S.-Y. Chang, Y.-C. Huang, F.-S. Shieu, and J.-W. Yeh, Surf. Coat. Technol. 206, 5096 (2012).CrossRefGoogle Scholar
  7. 7.
    A. Li and X. Zhang, Acta Metall. Sin. 22, 219 (2009).CrossRefADSGoogle Scholar
  8. 8.
    V. G. Shepelevich, Structural-Phase Transformation in Metals (BGU, Minsk, 2007).Google Scholar
  9. 9.
    F. F. Komarov, Ion Beam Modification of Metals (Gordon and Breach, New York, 1992).Google Scholar
  10. 10.
    F. F. Komarov, A. F. Komarov, Vl. V. Pil’ko, and V. V. Pil’ko Inzh.-Fiz. Zh. 86, 1393 (2013).Google Scholar
  11. 11.
    F. F. Komarov, S. V. Konstantinov, A. D. Pogrebnjak, V. V. Pilko, C. Kozak, and M. Opielak, Acta Phys. Pol. A 20, 109 (2014).Google Scholar
  12. 12.
    F. F. Komarov, S. V. Konstantinov, and V. V. Pilko, J. Frict. Wear 35, 215 (2014).CrossRefGoogle Scholar
  13. 13.
    A. A. Rusakov, Radiography of Metals (Atomizdat, Moscow, 1977).Google Scholar
  14. 14.
    M. Hong, F. Ren, h. Zhang, X. Xiao, B. Yang, C. Tian, D. Fu, Y. Wang, and C. Jiang, Appl. Phys. Lett. 101, 153117 (2012).CrossRefADSGoogle Scholar
  15. 15.
    T. D. Shen, S. Feng, M. Tang, J. A. Valdez, Y. Wang, and K. E. Sickafus, Appl. Phys. Lett. 90, 263115 (2007).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • F. F. Komarov
    • 1
  • A. D. Pogrebnyak
    • 2
  • S. V. Konstantinov
    • 1
  1. 1.Sevchenko Research Institute of Applied Physical ProblemsBelarussian State UniversityMinskBelarus
  2. 2.Sumy State UniversitySumyUkraine

Personalised recommendations