Technical Physics

, Volume 60, Issue 9, pp 1321–1325 | Cite as

Pioneering experiments on atomic-beam-assisted generation of drag currents in the Globus-M spherical tokamak

  • P. B. ShchegolevEmail author
  • N. N. Bakharev
  • V. K. Gusev
  • G. S. Kurskiev
  • V. B. Minaev
  • M. I. Patrov
  • Yu. V. Petrov
  • N. V. Sakharov


Research data for drag currents in the Globus-M spherical tokamak are presented. The currents are generated by injecting atomic beams of hydrogen and deuterium. Experiments were carried out in the hydrogen and deuterium plasma of the tokamak. It has a divertor configuration with a lower X-point, a displacement along the larger radius from–1.0 to–2.5 cm, and a toroidal field of 0.4 T at a plasma current of 0.17–0.23 MA. The beam is injected into the tokamak in the equatorial plane tangentially to the magnetic axis of the plasma filament with an impact diameter of 32 cm. To provide a 28-keV 0.5-MW atomic beam with geometrical sizes of 4 × 20 cm (at a power level of 1/e), an IPM-2 ion source is used. The generation of noninductive currents is detected from a rise in the loop current and a simultaneous dip of the loop voltage. The injection of the hydrogen and deuterium atomic beams into the deuterium plasma results in a noticeable and reproducible dip of the loop voltage (up to 0.5 V). Using the ASTRA transport code, a model is constructed that allows rapid calculation of noninductive currents. Calculations performed for a specific discharge confirm that the model adequately describes the effect of drag current generation.


Deuterium Electron Temperature Atomic Beam Neutral Beam Injection Loop Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ohkawa, Nucl. Fusion 10, 185 (1970).CrossRefGoogle Scholar
  2. 2.
    W. H. M. Clark, et al., Phys. Rev. Lett. 45, 1101 (1980).CrossRefADSGoogle Scholar
  3. 3.
    M. Zarnstorff, et al., Phys. Rev. Lett. 60, 1306 (1988).CrossRefADSGoogle Scholar
  4. 4.
    C. Challis, et al., in Proceedings of the 14th European Conference on Controlled Fusion and Plasma Physics, Madrid, Spain, 1987, Ed. by S. Methfessel (European Physical Society, Petit-Lancy, Switzerland, 1987).Google Scholar
  5. 5.
    T. Suzuki, R. J. Akers, D. A. Gates, et al., Nucl. Fusion 51, 083020 (2011).CrossRefADSGoogle Scholar
  6. 6.
    V. K. Gusev, V. E. Golant, E. Z. Gusakov, et al., Tech. Phys. 44, 1054 (1999).CrossRefGoogle Scholar
  7. 7.
    L. Spitzer, Physics of Fully Ionized Gases (Wiley, New York, 1962).Google Scholar
  8. 8.
    V. I. Pistunovich, Sov. J. Plasma Phys. 2, 1 (1976).ADSGoogle Scholar
  9. 9.
    B. A. Trubnikov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1963), Vol. 1, pp. 98–182.Google Scholar
  10. 10.
    D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1963), Vol. 4, pp. 81–187.Google Scholar
  11. 11.
    J. G. Cordey and M. J. Houghton, Nucl. Fusion 13, 215 (1973).CrossRefGoogle Scholar
  12. 12.
    J. W. Connor and J. G. Cordey, Nucl. Fusion 14, 185 (1974).CrossRefGoogle Scholar
  13. 13.
    V. V. Fomenko, Nucl. Fusion 15, 1091 (1975).CrossRefADSGoogle Scholar
  14. 14.
    J. G. Cordey and W. G. F. Core, Phys. Fluids 17, 1626 (1974).CrossRefADSGoogle Scholar
  15. 15.
    W. W. Heidbrink and G. J. Sadler, Nucl. Fusion 34, 535 (1994).CrossRefADSGoogle Scholar
  16. 16.
    V. K. Gusev, in Proceedings of the 25th IAEA Fusion Energy Conference, St. Petersburg, 2014, Poster No. OV/P-03.Google Scholar
  17. 17.
    N. N. Bakharev, in Proceedings of the 25th IAEA Fusion Energy Conference, St. Peterburg, 2014, Poster No. EX/P1-33.Google Scholar
  18. 18.
    Kenro Miyamoto, Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, 1997).Google Scholar
  19. 19.
    D. F. H. Start, J. G. Cordey, and E. M. Jones, Plasma Phys. 22, 303 (1980).CrossRefADSGoogle Scholar
  20. 20.
    V. K. Gusev, A. V. Dech, L. A. Esipov, et al., Tech. Phys. 52, 1127 (2007).CrossRefGoogle Scholar
  21. 21.
    G. V. Pereverzev and P. N. Yushmanov, “ASTRA automated system for transport analysis,” Preprint No. IPP-5/98 (IPP, Garching, 2002).Google Scholar
  22. 22.
    V. K. Gusev, S. E. Bender, A. V. Dech, et al., Tech. Phys. 51, 987 (2006).CrossRefGoogle Scholar
  23. 23.
    V. K. Gusev, E. A. Azizov, A. B. Alekseev, et al., Nucl. Fusion 53, 093013 (2013).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • P. B. Shchegolev
    • 1
    Email author
  • N. N. Bakharev
    • 1
  • V. K. Gusev
    • 1
  • G. S. Kurskiev
    • 1
  • V. B. Minaev
    • 1
  • M. I. Patrov
    • 1
  • Yu. V. Petrov
    • 1
  • N. V. Sakharov
    • 1
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations